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Due to the coupled nature of aircraft system design, it is important to consider all of the major sub-
systems when trying to optimize a configuration. This, however, is easier said than done, particularly
because each individual subsystem model can be arbitrarily complex, thus making optimization dif-
ficult. By restricting an optimization problem to have a certain mathematical structure, significantly
more effective and tractable solution techniques can be used. Geometric programming, an example
of one such technique, guarantees finding a globally optimal solution. Although it has been shown
that geometric programming can be used to solve some conceptual aircraft design problems, the re-
quired formulation can prove too restrictive for certain relationships. Signomial programming is a
closely related relaxation of geometric programming that offers enhanced expressiveness, but without
the guarantee of global optimality. Despite this, solution methods for signomial programs are disci-
plined and effective. In the present work, signomial programming models are proposed for optimal
preliminary sizing of the vertical tail, fuselage, and landing gear of a commercial aircraft with a tube-
and-wing configuration. Signomial programming’s relaxed formulation allows it to handle some of
the key constraints in tail, fuselage, and landing gear design and therefore a significant improvement
in fidelity over geometric programming models is achieved. The models are readily extensible and
easily combined with other models, making them effective building blocks for a full aircraft model.
A primary contribution of this work is to demonstrate signomial programming as a viable tool for
multidisciplinary aircraft design optimization.

I. Introduction
Geometric Programming (GP)a is an optimization technique that combines the expressiveness of non-linear objectives
and constraints with the mathematical rigor of convexity to provide a unique and powerful approach to the problem
of multidisciplinary aircraft design optimization. For problems that can be formulated as Geometric Programs (GPs),
modern solvers guarantee globally optimal solutions, are extremely fast, and return local sensitivities at no extra cost,
thanks to the principle of lagrange duality. In previous work, Hoburg [1] shows, firstly, that many models common to
aircraft design can be represented directly in GP-compatible form, and, secondly, that there are a number of innovative
ways of dealing with models that cannot, including, but not limited to, changes of variables and GP-compatible fitting
methods. Finally, it is also shown that such problems can be solved efficiently using a standard laptop computer.
The aircraft design problem solved in [1] includes models for steady level flight, range, takeoff distance, landing
speed, sprint flight condition, actuator disk propulsive efficiency, simple drag and weight buildups, and beam wing
box structure.

Due to these promising initial results, there is a strong desire to extend the use of GP for aircraft design both in
breadth, by considering more aspects of the aircraft design problem, and in depth, by increasing the fidelity of the
models used. Unfortunately, the restrictions on the formulation of GPs mean that not all aircraft design constraints can
be readily implemented as part of a GP. A generalization of GP called Signomial Programming (SP), helps to address
this by allowing constraints with less restrictive formulations [2]. A relatively small relaxation in the restriction on
problem formulation means that SP can handle a significantly more general set of problems than GP, but this comes
at an equally significant cost: SP does not boast the same guarantee of global optimality as GP. Despite this, solution
methods remain disciplined and effective by leveraging the difference of convex program structure of SP.

Signomial programming is important for aircraft design for two reasons: it allows a modeler to leverage some of
the powers of GP on models that are not GP-compatible, and it enables increasing fidelity where it is not possible to do
so in a GP-compatible way. From the authors’ limited experience, only a small proportion of the constraints in aircraft
design models require signomials, if any. In many cases, however, omitting these constraints would mean failing to
capture an important design consideration and would therefore be too crude. Sometimes, the constraint in question is
∗Graduate Student, Department of Aeronautics and Astronautics, MIT
†Graduate Student, Department of Mechanical Engineering, MIT
‡Assistant Professor, Department of Aeronautics and Astronautics, MIT
aThe “GP” acronym is overloaded, referring both to geometric programs - the class of optimization problem discussed in this work - and

geometric programming - the practice of using such programs to model and solve optimization problems. The same is true of the “SP” acronym.
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the only constraint that keeps one or more design variables meaningfully bounded. Thus, a sacrifice of optimization
quality and robustness is made in exchange for obtaining dual feasibility and/or higher model fidelity. It is important
to stress that the purpose of this work is not to use SP liberally, but rather to use it in a targeted and precise manner,
where the marginal cost of introducing a signomial constraint can be justified by an adequate increase in model fidelity
or accuracy. Because they result in convex restrictions on the feasible set, monomial and posynomial constraints are
still viewed as the preferred approach, wherever possible.

The purpose of this work is to develop SP models for design of the vertical tail, fuselage, and landing gear of a
commercial aircraft. More specifically, these models determine optimal values for the preliminary geometry, position-
ing and weight of each subsystem. The models created are readily extensible - constraints can be added and made
more sophisticated at little cost - and are also easily combined with each other to capture the strong coupling between
the subsystems. The ultimate goal of this line of work is to develop a full aircraft model that considers every major
subsystem as well as economic and operational factors. The present work is an intermediate step in achieving this
goal. To the authors’ best knowledge, this is the first published work on SP applied to aircraft design.

There has been extensive research in Multidisciplinary Design Optimization (MDO) methods for conceptual air-
craft design [3–7]. Of the many different frameworks in the literature, TASOPT [5] is particularly relevant to the
present work because of its use of physics based models, medium fidelity analytical models, and multidisciplinary
considerations of aircraft subsystems. Some common challenges faced in multidisciplinary design optimization in-
clude models that are too computationally expensive to be practical for a designer; final results that are sensitive to the
choice of baseline design; evaluations of black box functions, about which an optimizer knows very little; and coupling
of different analysis tools that requires delicate wiring between models, and generally another layer of complexity and
opacity.

II. Background
To motivate the value of signomial programming, we begin by introducing the topic of geometric programming, and
briefly discussing its strengths and limitations. We then discuss the relaxation from a geometric program to a signomial
program and its effect on modeling expressiveness and on finding an optimal solution. Finally, we define some of the
terminology used in this work.

A. Geometric Programming

First introduced in 1967 by Duffin, Peterson, and Zener [8], a geometric program is a specific type of constrained,
nonlinear optimization problem that becomes convex after a logarithmic change of variables. Modern GP solvers
employ primal-dual interior point methods [9] and are extremely fast. A typical sparse GP with tens of thousands of
decision variables and one million constraints can be solved on a desktop computer in minutes [2]. Furthermore, these
solvers do not require an initial guess and guarantee convergence to a global optimum, whenever a feasible solution
exists. Being able to find optimal solutions without needing an initial guess makes the technique particularly useful
for conceptual aircraft design, where it is important that results are not biased by preconceptions of what an optimal
aircraft should look like.

These impressive properties are possible because GPs represent a restricted subset of nonlinear optimization prob-
lems. In particular, the objective and constraints can only be composed of monomial and posynomial functions.

A monomial is a function of the form

m(u) = c
n∏

j=1

ua j

j , (1)

where a j ∈ R, c ∈ R++, and u j ∈ R++. For instance, the familiar expression for lift, 1
2ρV2CLS , is a monomial with

u = (ρ,V,CL, S ), c = 1/2, and a = (1, 2, 1, 1).
A posynomial is a function of the form

p(u) =

K∑
k=1

ck

n∏
j=1

ua jk

j , (2)

where ak ∈ Rn, ck ∈ R++, and u j ∈ R++. Thus, a posynomial is simply a sum of monomial terms, and all monomials
are also posynomials (with just one term).

In plain English, a GP minimizes a posynomial objective function, subject to monomial equality constraints and
posynomial inequality constraints. The standard form of a geometric program in mathematical notation is as follows:
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minimize p0(u)
subject to pi(u) ≤ 1, i = 1, ..., np, (3)

mi(u) = 1, i = 1, ..., nm,
where the pi are posynomial (or monomial) functions, the mi are monomial functions, and u ∈ Rn

++ are the decision
variables.

Although this form may appear restrictive, surprisingly many physical constraints and objectives can be expressed
in the necessary form, either exactly or to a close approximation [1]. Many relationships that cannot be formulated
exactly as posynomials can be approximated closely, using methods for fitting GP-compatible models to data [10].

B. Signomial Programming

Geometric programming is a powerful tool, with strong guarantees. As discussed above, however, the formulation can
prove restrictive. While changes of variable present an elegant way of circumventing some formulation obstacles, there
may not always exist a suitable variable change. In particular, the restriction c > 0 in the definition of a posynomial
can be a prohibitive obstacle for a modeler. There are many models where being able to use a negative monomial term
is critical. An example of this is if we want to minimize the difference between two quantities.

A signomial is a function with the same form as a posynomial,

s(u) =

K∑
k=1

ck

n∏
j=1

ua jk

j , (4)

except that the coefficients, ck ∈ R, can now be any real number. In particular, they can be non-positive. A signomial
program is therefore a generalization of a geometric program, where the constraint functions can be signomialsb:

minimize p0(u) (5)
subject to si(u) ≤ 0, i = 1, ..., ns,

pi(u) ≤ 1, i = 1, ..., np,

mi(u) = 1, i = 1, ..., nm.

An important point is that adding just one signomial constraint to a geometric program with arbitrarily many
posynomial constraints changes the geometric program to a signomial program.

The bad news is that the increased expressiveness of signomial programming comes at a price: we can no longer
guarantee a global optimum, because, unlike with GP, the log transformation of a signomial program is not a convex
optimization problem.

The good news is that there is a disciplined method for solving Signomial Programs (SPs). A locally optimal
solution can be found by solving a sequence of GPs [2], where at each iteration a local GP approximation to the SP is
solved, until convergence is achieved. Signomial programming is an example of ‘difference of convex’ programming,
because the logarithmically-transformed problem can be expressed as

minimize f0(x) (6)
subject to fi(x) − gi(x) ≤ 0, i = 1, ...,m

where fi and gi are convex. This means that, for the convex (GP) approximation, f̂ (x), of the non-convex (SP) function,
f (x) − g(x),

f̂ (x) ≥ f (x) ∀x. (7)

Because of this, the true feasible set contains the feasible set of the convexified problem, and there is no need for a
trust region [11], meaning that there is no need to tune solver parameters for controlling initial trust region sizes and/or
update rules. Solving an SP is, therefore, considerably more reliable than solving a general nonlinear program, as
there are fewer solver algorithm parameters to tune.

C. Terminology

Before further discussion, it is useful to introduce some of the vocabulary used to describe this work.
bThe fact that signomial constraints are expressed as being less than or equal to zero (as opposed to 1) is a subtlety of SP solution algorithms

that allows for a more efficient solution heuristic.
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1. Models

In the context of this work a model is a list of constraints, usually accompanied by an objective function. The objectives
and constraints are composed of design variables, which are the outputs of the model, and fixed variables or constants,
which are inputs to the model. Occasionally the term model may also refer to a list of constraints without an explicit
objective function.

2. GP- and SP-compatibility

A constraint is described as being GP-compatible if it can be written in the form of either the inequality or equality
constraints in (3). By extension, a GP-compatible model is one where the design variables, objectives, and constraints
all satisfy the requirements of a GP (3). If a model does not satisfy the requirements of being a GP, but satisfies the
slightly more relaxed requirements of an SP (5), it is said to be SP-compatible.

3. Parent and Child Models

A parent model is a model that adopts one or more self-contained child models. Both parent and child models are
typically self-standing, meaning they have their own objective functions and are both primal- and dual-feasible. When
a parent model adopts a child model, however, its objective function supersedes that of the child model. A model can
be both a parent model and a child model and the highest level parent model’s objective function governs the final
composed model.

Because models are effectively lists of constraints, model composition is little more than concatenation of these
lists. If both the parent model and the child model are GPs, i.e. can be logarithmically transformed into convex
optimization problems, then the composition of the models together can be thought of as the intersection of two
log-convex feasible sets, which is itself log-convex.

The use of modular parent and child models is helpful both from the practical perspective of code organization,
and from the perspective of being able to cleanly use and maintain the same child model in multiple parent models.
For example, for a relatively simple analysis, a wing and tail can share the same structural model. This modularity
means that a structural model can then be enhanced or even replaced with a better model easily.

III. Method
GPkit [12] is a tool that has recently been developed at MIT to enable fast formulation and solution of GPs. GPkit
interfaces with both open-source and commercially-available interior point method solvers. For the purpose of this
work, we use MOSEK [13] with a free academic license.

Recent work by Hoburg and Burnell has extended the capabilities of GPkit in two key areas: (i) the ability to
formulate signomial programs, and a sequential GP heuristic for solving them, and (ii) a framework to facilitate model
composition of parent and child models, using modular model structures and simple, readable syntax.

IV. Subsystem Models
Building on previous work, and given the need for higher fidelity modeling of aircraft subsystems, the main contribu-
tions of this work are SP-compatible subsystem models for a commercial subsonic transport aircraft with a tube-and-
wing configuration. Specifically, the models are for the vertical tail, fuselage, and landing gear. The purpose of these
models is to determine optimal sizing of each system for a fixed configuration, as opposed to being a more general
conceptual design exploration tool. Generalizing these models to allow for unconventional configurations is beyond
the scope of this work.

For each of these models, the objective functions are placeholders for more specific objective functions that would
be defined by a higher level model. For example, the highest level objective might be to minimize the total operating
cost of an aircraft, which would apply downward pressure on subsystem weight and drag, where applicable.

As a verification method, the Boeing 737 MAX is used as a benchmark aircraft against which to test the models.
Model inputs are based on true Boeing 737 MAX values wherever possible [14, 15] and estimated where the values
are unknown, with the intention of comparing the resulting solution to the true aircraft design. The Boeing 737 MAX
is chosen because it is the newest version of the most prolific narrowbody commercial aircraft in the world.

A. Vertical Tail

The purpose of an aircraft’s vertical tail is two-fold. Firstly, it must provide stability in yaw. Secondly, it must provide
adequate yaw control authority in critical flight conditions. For a multi-engine aircraft, the critical flight condition is
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typically an engine failure at low speeds. The vertical tail must be capable of providing sufficient sideforce in this
case [16]. The design of the vertical tail is therefore coupled to the size of the fuselage and the position of the engines,
and this is captured by the model.

1. Model assumptions

The high level assumptions for this model are that the aircraft has a single vertical tail, the horizontal tail is mounted
in a conventional configuration, so as to not require a reinforced vertical tail structure, and the aircraft has two wing-
mounted engines. This model also assumes that the ultimate high level model’s objective (e.g. minimizing fuel
consumption or operating costs) would apply downward pressure on both weight and drag.

2. Model description

Table 1: Vertical tail model free variables

Free Variables Units Description

Vertical Tail
Avt [−] Vertical tail aspect ratio
CDvis [−] Viscous drag coefficient
CLvt [−] Vertical tail lift force coefficient
Dvis [N] Vertical tail viscous drag in cruise
Dwm [N] Engine out windmill drag
Lmax [N] Maximum load for structural sizing
Lvt [N] Vertical tail lift in engine out condition
Rec [−] Vertical tail Reynolds number in cruise
S [m2] Vertical tail reference area (full span)
S vt [m2] Vertical tail reference area (half span)
Wstruct [N] Full span weight (from structural model)
Wvt [N] Vertical tail weight
∆xlead [m] Distance from CG to vertical tail leading edge
∆xtrail [m] Distance from CG to vertical tail trailing edge
λ [−] Vertical tail taper ratio
τ [−] Vertical tail thickness to chord ratio
b [m] Vertical tail full span
bvt [m] Vertical tail half span
c̄ [m] Vertical tail mean aerodynamic chord
croot [m] Vertical tail root chord
ctip [m] Vertical tail tip chord
lvt [m] Vertical tail moment arm
p [−] Substituted variable = 1 + 2λ
q [−] Substituted variable = 1 + λ
zc̄ [m] Vertical location of the mean aerodynamic chord

Vertical Tail Structure (duplicate variables linked)
A [−] Aspect ratio
Icap [−] Non-dim. spar cap area moment of inertia
Lmax [N] Maximum load for structural sizing
Mr [N] Root moment per root chord
S [m2] Reference area
Wcap [N] Weight of spar caps
Wstruct [N] Structural weight
Wweb [N] Weight of shear web
λ [−] Vertical tail taper ratio
ν [−] Substituted variable = (λ2 + λ + 1)/(λ + 1)
τ [−] Thickness to chord ratio
b [m] Span
p [−] Substituted variable = 1 + 2λ
q [−] Substituted variable = 1 + λ
tcap [−] Non-dim. spar cap thickness
tweb [−] Non-dim. shear web thickness

Table 2: Vertical tail model constants

Constants Units Description
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Vertical Tail
Aeng [m2] Engine reference area
CDwm [−] Windmill drag coefficient
CLvmax [−] Max lift coefficient for structural sizing
L f use [m] Length of fuselage
Te [N] Thrust per engine at takeoff
V1 [m/s] Minimum takeoff velocity
Vc [m/s] Cruise velocity
Vne [m/s] Never exceed velocity for structural sizing
µ [N ∗ s/m2] Dynamic viscosity (35,000ft)
ρc [kg/m3] Air density at cruise (35,000ft)
ρTO [kg/m3] Air density at takeoff (sea level)
tan(ΛLE) [−] Tangent of leading edge sweep (40 deg)
clvt [−] Sectional lift force coefficient (engine out)
e [−] Span efficiency of vertical tail
le [m] Engine moment arm
xCG [m] x-location of CG

Vertical Tail Structure
Nli f t [−] Wing loading multiplier
ρcap [kg/m3] Density of spar cap material
ρweb [kg/m3] Density of shear web material
σmax,shear [Pa] Allowable shear stress
σmax [Pa] Allowable tensile stress
fw,add [−] Wing added weight fraction
g [m/s2] Gravitational acceleration
rh [−] Fractional wing thickness at spar web
w [−] Wingbox-width-to-chord ratio

The placeholder objective function for the vertical tail model is a somewhat arbitrary function of cruise viscous drag
and weight, and is intended to reflect how a higher level objective might apply pressure to the vertical tail model.

Dvis + 0.1Wvt (8)

The first constraint specifies that the maximum moment exerted by the tail must be greater than or equal to the
moment exerted by the engines in an engine-out condition. In the worst case scenario, not only is there an asymmetric
thrust but this is exacerbated by the windmill drag of the engine that is shut off [5].

Lvtlvt ≥ Dwmle + Tele (9)

The moment arm of the vertical tail is the distance from the aircraft Center of Gravity (CG) to the aerodynamic
center of the vertical tail, which is assumed to be at the quarter chord. The moment arm is therefore upper bounded by
the distance from the CG to the leading edge of the tail at the root, the height of the mean aerodynamic chord above
the fuselage, the sweep angle, and the mean aerodynamic chord.

∆xlead + zc̄tan(ΛLE) + 0.25c̄ ≥ lvt (10)

Note that this is a signomial constraint. A simple GP-compatible approximation to this constraint would be to neglect
sweep and to assume that the aerodynamic center is at the leading edge.

The worst case engine out condition is likely to occur during takeoff, when the velocity is lowest but the engine
force required to safely complete takeoff is highest. The force exerted by the vertical tail in this critical low speed case
is determined as the maximum lift coefficient of the tail and vertical tail reference area multiplied by the minimum
dynamic pressure, which might typically occur at the rotation speed at sea level. As a conservative estimate, the V1
speed is used because it is the minimum speed after which a takeoff can be completed, following a critical engine
failure. This constraint can be made more demanding by assuming a high altitude runway.

Lvt =
1
2
ρ0V1

2S vtCLvt (11)

Using finite wing theory, the 3D lift coefficient can be related to the airfoil sectional lift coefficient by the following
relationship [18]:

CLvt

(
1 +

clvt

πeAvt

)
≤ clvt (12)

6 of 26

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

A
SS

A
C

H
U

SE
T

T
S 

IN
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

M
ar

ch
 1

2,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
20

03
 



xCG

le

c̄

bvt

∆xlead

lvt

∆xtrail

L f use

croot

ΛLE

zc̄

Figure 1: Key dimensions for the vertical tail model (adapted from [17])
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Meanwhile, the windmill drag can, to a first approximation, be calculated using a drag coefficient and a reference
area [5], in this case the area of the engine fan.

Dwm ≥
1
2
ρ0V1

2AengCDwm (13)

A simple formula relates the reference area, span and mean geometric chord, for a trapezoidal tail. This is another
signomial constraint.

S vt ≤ bvt
croot + ctip

2
(14)

To further define the geometry of the vertical tail, the x-coordinates of the leading and trailing edge at the root are
related by the root chord. The tail trailing edge is upper bounded by imposing a constraint that the tail root cannot
extend beyond the end of the fuselage. Together these constraints put an upper bound on the moment arm of the tail
based on the length of the fuselage.

∆xtrail ≥ croot + ∆xlead (15)

L f use ≥ xCG + ∆xtrail (16)

The mean aerodynamic chord for a trapezoidal wing is defined as:

c̄ =
2
3

(
1 + λ + λ2

1 + λ

)
croot (17)

This can be made into a signomial constraint. Though not absolutely necessary, substitute variables p and q already
appear in the structural sub-model and are therefore convenient to use here too.

c̄ ≤
2
3

(
1 + λ + λ2

q

)
croot (18)

2q ≥ 1 + p (19)

p ≥ 1 + 2λ (20)

λ =
ctip

croot
(21)

One advantage of using these posynomial constraint substitutions is that they can be reused for the constraint
that defines the vertical position of the mean aerodynamic chord, which saves us from needing to implement another
signomial constraint.

zc̄ =
bvtq
3p

(22)

It is necessary put a lower bound on taper to avoid unacceptably small Reynolds numbers at the tip [19]. For the
purpose of this work, the taper is lower bounded by the taper ratio of the benchmark aircraft [15].

λ ≥ 0.27 (23)

The viscous drag for the tail in cruise is lower bounded using the familiar expression for drag. A GP-compatible
fitted model [20] is used to capture the dependence on airfoil thickness and Reynolds number based on the mean
aerodynamic chord. 50 data points were sampled using XFOIL [21] and a posynomial constraint was then fitted to
these data points.

Dvis ≥
1
2
ρcVc

2S vtCDvis (24)

CDvis
0.12 ≥ 0.118Rec

0.0016τ0.0082 + 0.198Rec
0.0017τ0.0077 + 0.19Rec

0.0017τ0.0075 + 1.83 × 104 τ3.5

Rec
0.49 (25)

Rec =
ρcVcc̄
µ

(26)

Finally, the tail model adopts the wing structure model from Hoburg [1], which adds a further 12 constraints. This
structural model requires a maximum load, which is constrained by a maximum dynamic pressure and a maximum lift
coefficient.

Lmax =
1
2
ρ0V2

neS vtCLvmax (27)
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The wing structure model is for a full span wing, whereas, naturally, the vertical tail only has a “half” span. For
this reason the vertical tail geometry and weight must be related to the geometry and weight definitions used in the
structural model.

2S vt = S (28)

2bvt = b (29)

2Wvt = Wstruct (30)

3. Model Results

By using fixed values representative of the benchmark aircraft, a solution was obtained for this SP. Tables of the
optimal values and the constant values used can be found in the appendix. Solving the SP took 4 GP solves and 0.48
seconds. There is reasonable agreement between the optimal values and the values for the benchmark aircraft as can
be seen in Table 3.

Table 3: Solution comparison with the benchmark aircraft

Design Variable Value Estimate for benchmark aircraft

Avt [−] 1.81 1.91 [15]
bvt [m] 7.56 7.16 [15]

S vt

[
m2

]
31.6 26.4 [15]

The objective function value is most sensitive to the length of the fuselage: a 1% decrease in the fuselage length
would undesirably increase the objective function value by approximately 2.8%. The next most influential parameter
is the worst-case velocity for which the tail must be able to handle the engine out condition. According to this model,
if the V1 speed is decreased by 1%, the objective value would increase by 2.5%. The objective function is also sensitive
to the cruise velocity, the x-location of the CG, and the spanwise position of the engine. Decreasing these parameters
by 1% would decrease the objective value by 1.4%, 1.3%, and 1.3%, respectively.

B. Fuselage

At a high level, the purpose of a conventional commercial aircraft fuselage can be decomposed into two primary
functions: integrating and connecting all of the subsystems (e.g. wing, tail, landing gear), and carrying the payload,
which typically consists of passengers, luggage, and sometimes cargo. The design of the fuselage is therefore coupled
with virtually every aircraft subsystem, and the tail and landing gear are no exception.

Drela performs a detailed, but still approximate, analysis of fuselage structure and weight in [5], considering
pressure loads, torsion loads, buoyancy weight, window weight, payload proportional weights, the floor, the tail cone,
and bending loads. The majority of the constraints in this model are adapted directly from these equations.

1. Model assumptions

This model assumes a single circular cross section fuselage. This is slightly inaccurate for narrowbody aircraft like the
Boeing 737 and Airbus A320, neither of which have perfectly circular cross sections. The model also assumes a single
vertical tail with a conventional configuration, and a single aisle. It also assumes that a higher level model dictates an
optimal number of passengers, and again, that drag and weight are both undesirable.

2. Model description

Table 4: Fuselage model free variables

Free Variables Units Description

A f loor [m2] Floor beam cross sectional area
A f use [m2] Fuselage cross sectional area
Ahold [m2] Cross sectional area of the hold
Askin [m2] Skin cross sectional area
D [N] Total drag in cruise
D f riction [N] Friction drag
Dupsweep [N] Form drag due to fuselage upsweep
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FF [−] Fuselage form factor
M f loor [N ∗ m] Maximum bending moment in floor beams
P f loor [N] Distributed floor load
Qv [N ∗ m] Torsion moment imparted by vertical tail
R f use [m] Fuselage radius
S bulk [m2] Bulkhead surface area
S f loor [N] Maximum shear in floor beams
S nose [m2] Nose surface area
Vbulk [m3] Bulkhead skin volume
Vcabin [m3] Cabin volume
Vcargo [m3] Cargo volume
Vcone [m3] Cone skin volume
Vcyl [m3] Cylinder skin volume
V f loor [m3] Floor volume
Vhold [m3] Hold volume
Vluggage [m3] Luggage volume
Vnose [m3] Nose skin volume
Wapu [N] APU weight
Wbuoy [N] Buoyancy weight
Wcone [N] Cone weight
W f loor [N] Floor weight
W f use [N] Fuselage weight
Winsul [N] Insulation material weight
Wluggage [N] Passenger luggage weight
Wpadd [N] Misc. weights (attendants, food, galley, toilets, doors etc.)
Wpass [N] Passenger weight
Wpay [N] Payload weight
Wseat [N] Seating weight
Wshell [N] Shell weight
Wskin [N] Skin weight
Wwindow [N] Window weight
λcone [−] Tailcone radius taper ratio
φ [−] Upsweep angle
ρcabin [kg/m3] Air density in cabin
σx [N/m2] Axial stress in skin
σθ [N/m2] Hoop stress in skin
τcone [N/m2] Shear stress in cone
f [−] Fineness ratio
h f loor [m] Floor I-beam height
hhold [m] Height of the cargo hold
lcone [m] Cone length
l f loor [m] Floor length
l f use [m] Fuselage length
lnose [m] Nose length
lshell [m] Shell length
npass [−] Number of passengers
nrows [−] Number of rows
pλv [−] 1 + 2*tail taper ratio
qλv [−] 1 + tail taper ratio
tcone [m] Cone thickness
tshell [m] Shell thickness
tskin [m] Skin thickness
w f loor [m] Floor width
xshell1 [m] Start of cylinder section

Table 5: Fuselage model constants

Constants Units Description

LF [−] Load factor
Lvmax [N] Maximum vertical tail force
Nland [−] Emergency landing load factor
R [J/K/kg] Universal gas constant
S PR [−] Number of seats per row
Tcabin [K] Cabin temperature
V∞ [m/s] Cruise velocity
W′′f loor [N/m2] Floor weight/area density
W′′insul [N/m2] Weight/area density of insulation material
W′seat [N] Weight per seat
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W′window [N/m] Weight/length density of windows
Wavg.pass [lb f ] Average passenger weight
Wcargo [N] Cargo weight
Wcarryon [lb f ] Average carry-on bag weight
Wchecked [lb f ] Average checked bag weight
W f ix [lb f ] Fixed weights (pilots, cockpit seats, instrumentation, navcom)
∆h [m] Distance from floor to widest part of fuselage
∆p [Pa] Pressure difference across fuselage skin
µ [N ∗ s/m2] Dynamic viscosity (35,000ft)
ρ∞ [kg/m3] Freestream air density (35,000ft)
ρbend [kg/m3] Stringer density
ρcargo [kg/m3] Cargo density
ρcone [kg/m3] Cone material density
ρ f loor [kg/m3] Floor material density
ρluggage [kg/m3] Luggage density
ρskin [kg/m3] Skin density
σ f loor [N/m2] Max allowable cap stress
σskin [N/m2] Max allowable skin stress
τ f loor [N/m2] Max allowable shear web stress
bv [m] Vertical tail span
cvt [m] Vertical tail chord
fapu [−] APU weight as fraction of payload weight
f f add [−] Skin proportional added weight of local reinforcements
f f rame [−] Fractional weight of frame
flugg,1 [−] Proportion of passengers with one suitcase
flugg,2 [−] Proportion of passengers with two suitcases
fpadd [−] All other misc. weight as fraction of payload weight
fstring [−] Fractional weight of stringers
g [m/s2] Gravitational acceleration
nseat [−] Number of seats
pcabin [Pa] Cabin air pressure (8000ft)
ps [in] Seat pitch
rE [−] Ratio of stringer/skin moduli
waisle [m] Aisle width
wseat [m] Seat width
wsys [m] Width between cabin and fuselage skin for systems/frames

lshelllnose lcone

l f use

Figure 2: Key dimensions for the fuselage model (adapted from [17])

The placeholder objective is an arbitrary function of drag and weight chosen to reflect the pressure applied by a
higher level objective function.

DW f use (31)

The fuselage shell is assumed to begin at approximately the end of the nose section.

lnose = xshell1 (32)
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2R f use

hhold

∆h

h f loor

waisle

wseat wsys

w f loor

Figure 3: Key cross section dimensions for the fuselage model (adapted from [17])

The fuselage must be wide enough to accommodate the width of the seats in a row and the width of the aisle.

2R f use ≥ (SPR)wseat + waisle + 2wsys (33)

The cross sectional area of the fuselage skin is lower bounded using a thin walled cylinder assumption.

Askin ≥ 2πR f usetskin (34)

The cross sectional area of the fuselage is lower bounded using the radius of the fuselage.

A f use ≥ πR f use
2 (35)

The effective modulus-weight shell thickness is lower bounded by assuming that only the skin and stringers contribute
to bending. This constraint also uses an assumed fractional weight of stringers that scales with the thickness of the
skin.

tshell ≥ tskin

(
1 + fstringrE

ρskin

ρbend

)
(36)

The axial and hoop stresses in the fuselage skin are calculated based on the pressurization load due to the difference
between cabin pressure and ambient pressure at cruise altitude. The thickness of the skin is therefore sized by the
maximum allowable stress of the chosen material.

σx =
∆p
2

R f use

tshell
(37)

σθ = ∆p
R f use

tskin
(38)

σskin ≥ σx (39)

σskin ≥ σθ (40)

With the skin thickness constrained we can assert a lower bound for the weight of the fuselage skin, excluding the
tail cone. This is done by calculating the volume of the skin for the nose, main cabin, and rear bulkhead, and then

12 of 26

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

A
SS

A
C

H
U

SE
T

T
S 

IN
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

M
ar

ch
 1

2,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
20

03
 



multiplying this by the skin material density. The surface area of the nose, which is approximated as an ellipse, is
calculated using Cantrell’s approximation [5]. The surface area of the hemispherical rear bulkhead is also constrained.

S nose
8
5 ≥

(
2πR2

f use

) 8
5

1
3

+
2
3

(
lnose

R f use

) 8
5
 (41)

S bulk = 2πR f use
2 (42)

Vcyl = Askinlshell (43)

Vnose = S nosetskin (44)

Vbulk = S bulktskin (45)

Wskin ≥ ρsking
(
Vbulk + Vcyl + Vnose

)
(46)

The weight of the fuselage shell is then constrained by accounting for the weights of the frame, stringers, and other
structural components, all of which are assumed to scale with the weight of the skin.

Wshell ≥ Wskin

(
1 + f f add + f f rame + fstring

)
(47)

The effective buoyancy weight of the aircraft is also calculated using a specified cabin pressure at cruise, the ideal gas
law, an approximate cabin volume, and the difference in pressure with respect to the ambient pressure at cruise.

ρcabin =
pcabin

RTcabin
(48)

Vcabin ≥ A f use

(
0.67R f use + 0.67lnose + lshell

)
(49)

Wbuoy ≥ (ρcabin − ρ∞) gVcabin (50)

The window and insulation weight is calculated using assumed weight/length and weight/area densities respectively. It
is assumed that only the cabin is insulated and that the cabin takes up approximately 55% of the fuselage cross section.

Wwindow = W ′
windowlshell (51)

Winsul ≥ W ′′insul

(
0.55 (S bulk + S nose) + 1.1πR f uselshell

)
(52)

The APU is assumed to be proportional to the payload weight. Other payload proportional weight is also accounted
for using a weight fraction. This category includes flight attendants, food, galleys, toilets, furnishing, doors, lighting,
air conditioning, and in-flight entertainment systems. The total seat weight is a product of the weight per seat and the
number of seats.

Wapu = Wpay fapu (53)

Wpadd = Wpay fpadd (54)

Wseat = W ′seatnseat (55)

The floor must be designed to withstand at least the weight of the payload and seats multiplied by a safety factor for
an emergency landing.

P f loor ≥ NlandWpay + NlandWseat (56)

The maximum moment and shear in the floor are determined based on this design load and the width of the floor,
assuming that the floor/wall joints are pinned and there are no center supports.

S f loor = 0.5P f loor (57)

M f loor = 0.125P f loorw f loor (58)

The length of the nose is lower bounded by a fixed value necessary for the cockpit length.

lnose ≥ 5.2[m] (59)

The floor beam cross sectional area is constrained by the maximum allowable cap stress and shear web stress for the
beams.

A f loor ≥ 1.5
S f loor

τ f loor
+ 2

M f loor

σ f loorh f loor
(60)
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The seat pitch and the number of rows are fixed and constrain the length of the shell. Meanwhile, the required height
from the widest part of the fuselage to the floor constrains the width of the floor. Such a constraint could reflect a
passenger comfort metric or even a window viewing angle requirement.

lshell ≥ nrows ps (61)

l f loor ≥ 2R f use + lshell (62)(w f loor

2

)2
+ ∆h2 ≥ R f use

2 (63)

The weight of the floor is therefore lower bounded by a density of the floor beams multiplied by the volume in addition
to an assumed weight/area density for the planking.

V f loor ≥ A f loorw f loor (64)

W f loor ≥ V f loorρ f loorg + W ′′f loorl f loorw f loor (65)

The tail cone needs to be able to transfer the loads exerted on the vertical tail to the rest of the fuselage. The maximum
torsion moment imparted by the vertical tail depends on the maximum force exerted on the tail as well as the span and
taper ratio of the tail.

Qv =
Lvmax bv

3
1 + 2λv

1 + λv
(66)

Although this is already a signomial constraint and could be left as is, a change of variables is used for future compat-
ibility with the structural sub-model within the tail model, which uses p = 1 + 2λv and q = 1 + λv to make a structural
constraint GP compatible. The same taper lower bound is introduced as in the tail model.

Qv =
Lvmax bv

3
pλv

qλv

(67)

1 + pλv ≥ 2qλv (68)

pλv ≥ 1.6 (69)

The cone skin shear stress is constrained to the maximum allowable stress in the skin material.

τcone = σskin (70)

The thickness of the cone skin is constrained by the torsion moment, the cone cross sectional area, and the maximum
shear stress of the cone materials. The cone cross sectional area, which of course varies along the cone, is coarsely
approximated to be the fuselage cross sectional area, i.e. the cross sectional area of the cone base.

Qv = 2A f useτconetcone (71)

The volume of the cone is a definite integral from the base to the tip of the cone. This integral is evaluated in [5] and
rearranged into a signomial constraint.

R f useVcone (1 + λcone) ≥ 2
Qvlcone

τcone
(72)

The tail cone taper ratio, defined as the ratio of the cone radius at the leading edge of the tail and the radius at the
base of the cone (i.e. the fuselage radius), is specified. Ideally this would be a design variable, however, leaving it
unspecified results in a dual infeasible problem. TASOPT requires the taper ratio to be fixed as well.

λcone = 0.4 (73)

This taper ratio constrains the length of the cone relative to the chord of the tail (approximated as the mean aerodynamic
chord), which is fixed.

λcone =
cvt

lcone
(74)

Just like the shell, the cone weight is bounded using assumed proportional weights for additional structural elements,
stringers, and frames.

Wcone ≥ ρconegVcone

(
1 + f f add + f f rame + fstring

)
(75)
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The passenger component of payload weight depends on load factor.

nseat = (SPR)nrows (76)

npass = (LF)nseat (77)

Wpass = Wavgpersonnpass (78)

The weight of luggage is lower bounded by a buildup of 2-checked-bag customers, 1-checked-bag customers, and
average carry-on weight. This constraint is disproportionately and unnecessarily detailed, but it serves to demonstrate
that constraints of a posynomial form can be made arbitrarily complex for little additional cost, as discussed earlier.

Wluggage ≥ 2Wchecked flugg,2npass + Wchecked flugg,1npass + Wcarryon (79)

The weight of luggage and cargo is of course tied to the volume and average density of luggage and cargo. The
volume determined by these constraints can be used to determine required luggage hold volume, which in turn helps
to determine the hold cross sectional area.

Wluggage = Vluggageρluggageg (80)

Wcargo = Vcargoρcargog (81)

Vhold ≥ Vcargo + Vluggage (82)

Vhold = Aholdlshell (83)

Given the required cargo hold cross sectional area, and the fact that the cargo hold shape is approximately a segment
of the circular cross section, we can constrain the required hold height using an approximation of the area of a circle
segment developed by Harris [22]. This approximation is conveniently in SP form and is guaranteed to be within 0.1%
of the true value for arc angles less than 150◦ and within 0.8% for all other angles.

Ahold ≤
1
2

hhold
3

w f loor
+

2
3

hholdw f loor (84)

This hold height introduces another constraint on the height of the floor beams and the radius of the fuselage cross
section, given a required vertical distance from the floor to the widest part of the fuselage, in the interest of passenger
comfort.

R f use ≥ ∆h + h f loor + hhold (85)

The total weight of the payload, and in turn the total weight of the fuselage, can be determined by adding all of
the constituent weights. The fixed weight incorporates pilots, cockpit windows, cockpit seats, flight instrumentation,
navigation and communication equipment, which are expected to be roughly the same for all aircraft [5].

Wpay ≥ Wcargo + Wluggage + Wpass (86)

W f use ≥ Wapu + Wbuoy + Wcone + W f loor + Winsul + Wpadd + Wseat + Wshell + Wwindow + W f ix (87)

The drag felt by the fuselage in cruise is approximated using a form factor, which is a function of the fineness ratio [16].

l f use ≥ lnose + lshell + lcone (88)

f =
l f use√(
4
π

)
A f use

(89)

FF ≥ 1 +
60
f 3 +

f
400

(90)

A lower bound approximation for the friction drag is then the form factor multiplied by the integral of the turbulent
flat plate skin friction coefficient [18] over a cylinder. A simplistic assumption here is the lack of correction for
compressibility effects.

D f riction ≥ (FF)
(
2πR f use

) (1
2
ρV∞2

) (
0.074

ν

V∞
Re0.8

)
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=⇒ D f riction ≥ 0.074π(FF)R f useµV∞

(
ρ∞V∞l f use

µ

)0.8

An additional source of fuselage drag can be parameterized by the upsweep of the fuselage, which is also coupled with
the landing gear model. The upsweep angle can be related to the length of the cone and the radius of the fuselage by the
tangent of the angle. Unfortunately, trigonometric functions are not SP-compatible, so we must fit it with a function
that is. Fortunately, the tangent function is approximately affine in logarithmic space, so it is well approximated by a
monomial function, which allows us to use an equality constraint.

1.13226φ1.03759 =
R f use

lcone
(91)

The drag due to upsweep is approximated based on a relationship given in [16].

Dupsweep ≥
(
3.83A f use

) (1
2
ρ∞V2

∞

)
φ2.5 (92)

The total drag is lower bounded by the drag due to friction and the drag due to upsweep.

D ≥ D f riction + Dupsweep (93)

3. Model Results

By using fixed values representative of the benchmark aircraft, a solution was obtained for this SP. Tables of the
optimal values and the constant values used can be found in the appendix. Solving the SP took 5 GP solves and 0.51
seconds. Again, there is reasonable agreement between the optimal values and the values for the benchmark aircraft,
which are estimated using [5, 14].

Table 6: Solution comparison with the benchmark aircraft

Design Variable Value Estimate for benchmark aircraft

R f use [m] 1.86 1.88 [14]
l f use [m] 39.6 39.1 [14]

W f use
[
kg

]
15,100 16,300 [5]

The objective function is most sensitive to seat width: a 1% decrease in seat width would yield approximately a
2.2% improvement (decrease) in the objective. The objective function is also sensitive to the cruise velocity (1.9%), the
number of seats per row (1.8%), and the total number of seats (1.1%). Of course, the fact that the last two quantities
must be an integer and a multiple of the number of seats per row, respectively must be taken into consideration.
Interestingly, the next most influential parameter is the tail chord. According to this model, a 1% decrease in the tail
chord would undesirably increase the objective function value by 0.9%.

C. Landing Gear

The landing gear is integral to the configuration of the aircraft. Its purpose is to support the weight of the aircraft and
allow it to manouevre while it is on the ground, including during taxi, takeoff, and landing. The landing gear typically
weighs between three and six percent of the maximum aircraft takeoff weight [23]. Many of the constraints imposed on
landing gear design are described in [16]. MDO of landing gear is critically important because of how coupled design
of the landing gear system is to other subsystems, particularly the fuselage, wings, and engine positions. Chai [23]
proposes a MDO tool for landing gear design, considering the angle of pitch and roll during takeoff and landing,
stability at touchdown and during taxi, sideways turnover angle, braking and steering qualities, gear length, landing
gear attachment, aircraft turning radius, and centerline-guidance taxiing.

1. Model assumptions

The landing gear model assumes a conventional and retractable tricycle landing gear configuration for narrowbody
commerical aircraft such as a Boeing 737 MAX. The nose gear consists of a single strut supported by two wheels.
The main gear consists of two struts mounted in the inboard section of the wings, each supported by two wheels. The
model only takes one CG location as an input, i.e. it does not consider CG travel. It is also assumed that the main
landing gear retracts towards the centerline of the aircraft, rotating about the x axis.
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2. Model description

Table 7: Landing gear model free variables

Free Variables Units Description

B [m] Landing gear base
Eland [J] Maximum kinetic energy to be absorbed in landing
Fwm [−] Weight factor (main gear)
Fwn [−] Weight factor (nose gear)
Im [m4] Area moment of inertia (main strut)
In [m4] Area moment of inertia (nose strut)
Lm [N] Maximum static load through main gear
Ln [N] Minimum static load through nose gear
Lndyn [N] Dynamic braking load (nose gear)
Lwm [N] Static load per wheel (main gear)
Lwn [N] Static load per wheel (nose gear)
S [m] Stroke of the shock absorber
T [m] Main landing gear track
Waddm [N] Proportional added weight (main gear)
Waddn [N] Proportional added weight (nose gear)
Wlg [N] Weight of landing gear
Wmg [N] Weight of main gear
Wms [N] Weight of main struts
Wmw [N] Weight of main wheels (per strut)
Wng [N] Weight of nose gear
Wns [N] Weight of nose strut
Wnw [N] Weight of nose wheels (total)
Wwa,m [lb f ] Wheel assembly weight for single main gear wheel
Wwa,n [lb f ] Wheel assembly weight for single nose gear wheel
∆xm [m] Distance between main gear and CG
∆xn [m] Distance between nose gear and CG
tan(φ) [−] Angle between main gear and CG
tan(ψ) [−] Tip over angle
doleo [m] Diameter of oleo shock absorber
dtm [in] Diameter of main gear tires
dtn [m] Diameter of nose tires
lm [m] Length of main gear
ln [m] Length of nose gear
loleo [m] Length of oleo shock absorber
rm [m] Radius of main gear struts
rn [m] Radius of nose gear struts
tm [m] Thickness of main gear strut wall
tn [m] Thickness of nose gear strut wall
wtm [m] Width of main tires
wtn [m] Width of nose tires
xm [m] x-location of main gear
xn [m] x-location of nose gear
xCG [m] x-location of CG including landing gear
ym [m] y-location of main gear (symmetric)

Table 8: Landing gear model constants

Constants Units Description

E [GPa] Modulus of elasticity, 4340 steel
K [−] Column effective length factor
Ns [−] Factor of safety
W0 [N] Weight of aircraft excluding landing gear
ηs [−] Shock absorber efficiency
λ [−] Ratio of maximum load to static load
ρst [kg/m3] Density of 4340 Steel
σyc [Pa] Compressive yield strength, 4340 steel
tan(γ) [−] Tangent of dihedral angle
tan(φmin) [−] Lower bound on φ
tan(ψmax) [−] Upper bound on ψ
tan(θTO) [−] Takeoff pitch angle
dnacelle [m] Nacelle diameter
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g [m/s2] Gravitational acceleration
hhold [m] Hold height
hnacelle [m] Minimum nacelle clearance
nmg [−] Number of main gear struts
nwps [−] Number of wheels per strut
poleo [psi] Oleo pressure
w [ f t/s] Ultimate velocity of descent
xCG0 [m] x-location of CG excluding landing gear
xup [m] Fuselage upsweep point
yeng [m] Spanwise location of engines
zCG [m] CG height relative to bottom of fuselage
zwing [m] Height of wing relative to base of fuselage

The placeholder objective function for this model is simply the total landing gear weight, Wlg. This is based on the
fact that having heavy landing gear directly impacts fuel consumption by increasing the empty weight of the aircraft.

The difference between the lengths of the main gear and nose gear is constrained by the vertical position of the
wing with respect to the bottom of the fuselage, as well as the spanwise location of the main gear and the wing dihedral.
This relationship is a signomial constraint.

ln + zwing + ym tan(γ) ≥ lm (94)

The landing gear track and base are defined relative to the x- and y-coordinates of the nose and main gear.

T = 2ym (95)

xm ≥ xn + B (96)

The geometric relationships between the x-coordinates of the main gear, nose gear and the CG position must be
enforced. These relationships are:

xn + ∆xn = xCG (97)

xCG + ∆xm = xm (98)

Because the definition of a signomial program (5) does not allow posynomial equality constraints, we must relax
these to be inequality constraints. However, (97) and (98) must be satisfied exactly, meaning the constraints that
enforce them must be tight. For each relationship, we have a choice between a posynomial inequality constraint and a
signomial inequality constraint. As will be shown below, the load through the nose gear and main gear is proportional
to the distance from the CG to the main and nose gear respectively. Because there is downward pressure on these loads
- more load generally means heavier landing gear - there is also downward pressure on the distances ∆xn and ∆xm,
therefore we must use a signomial constraint for both relationships.

xn + ∆xn ≥ xCG (99)

xCG + ∆xm ≥ xm (100)

Of course, the CG location is also affected by the weight and position of the landing gear, and this adds another
signomial constraint.

(W0 + Wlg)xCG ≤ W0xCG0 + Wngxn + Wmgxm (101)

The maximum static load through the nose and main gear is constrained by the total weight of the aircraft (excluding
landing gear) and the relative distances from the CG to the main and nose gear, respectively.

Ln =
W0∆xm

B
(102)

Lm =
W0∆xn

B
(103)

For the nose gear, there is an additional dynamic load due to the braking condition. A typical braking deceleration of
3m/s2 is assumed [16].

Lndyn ≥ 0.31W0
lm + zCG

B
(104)
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xn ∆xn ∆xm

xm

B

xup

ym

T

dnac

zCG

yeng

hnac

Dtm

T

lnlm

θ

φ

zwing γ

xCG

Dtn

Figure 4: Key dimensions for the landing gear model (adapted from [17])
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The nose gear requires adequate load for satisfactory steering performance. A typical desirable range is between 5%
and 20% of the total load [16].

Ln

W0
≥ 0.05 (105)

Ln

W0
≤ 0.2 (106)

A longitudinal tip over criterion requires that the line between the main gear and the CG be at least 15◦ relative to the
vertical such that the aircraft will not tip back on its tail at a maximum nose-up attitude [16]. This puts a lower bound
on the x-location of the main gear. Note that tan(φ) is a design variable here, instead of φ, to make the constraint
SP-compatible.

xm ≥ (lm + zCG) tan(φ) + xCG (107)

tan(φ) ≥ tan(φmin) (108)

A lateral tip over constraint is introduced to ensure that an aircraft does not tip over in a turn [23]. The turnover angle
is defined as

tanψ =
zCG0 + lm
∆xn sin δ

(109)

where
tan δ =

ym

B
. (110)

Using the relationship

cos
(
arctan

(ym

B

))
=

B√
B2 + y2

m

, (111)

this constraint can, perhaps surprisingly, be rewritten in, not only SP-compatible, but GP-compatible form as

1 ≥
(zCG0 + lm)2(ym

2 + B2)
(∆xnym tan(ψ))2 (112)

Typically this angle, ψ, should be no larger than 63◦ [16].

tan(ψ) ≤ tan(ψmax) (113)

The aircraft must be able to rotate on its main wheels at takeoff without striking the tail of the fuselage and, similarly,
must be able to land on its main gear without striking the tail [16]. This constrains the location of the main gear. More
specifically, the horizontal distance between the main gear and the point at which the fuselage sweeps up towards the
tail must be sufficiently small, relative to the length of the main gear, such that the angle relative to the horizontal from
the main wheels to the upsweep point is greater than the takeoff/landing angles. The result is a signomial constraint
that imposes a lower bound on the length of the gear and the x-location of the main gear.

lm
tan(θTO)

≥ xup − xm (114)

The length of the main gear is also constrained by the engine diameter, because the engines must have sufficient
clearance from the ground. A signomial constraint provides another lower bound on the length of the main gear.

lm + (yeng − ym) tan(γ) ≥ dnacelle + hnacelle (115)

The landing gear position in the spanwise (y) direction is, on one side, lower bounded by the length of the gear itself
and, on the other side, upper bounded by the spanwise location of the engines. Both of these constraints are necessary
to allow the landing gear to retract in the conventional manner for typical narrowbody commercial aircraft.

ym ≥ lm (116)

ym ≤ yeng (117)

Oleo-penumatic shock absorbers are common to landing gear for large aircraft. Their purpose is to reduce the vertical
load on the aircraft at touchdown, and they are typically sized by a hard landing condition. The maximum stroke of
the shock absorber can be determined by considering the aircraft’s kinetic energy, and the target maximum load [24].

Eland =
W0

2g
w2 (118)
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S =
1
ηs

Eland

Lmλ
(119)

As a preliminary model, the oleo size can be estimated using historical relations that are conveniently in monomial
form [16]. The length of the main gear must be greater than the length of the oleo and the radius of the tires.

loleo = 2.5S (120)

doleo = 1.3

√
4λLM/nmg

poleoπ
(121)

lm ≥ loleo +
dtm

2
(122)

The weight of each strut for both the main and nose struts is lower bounded by assuming a thin walled cylinder with
constant cross sectional area.

Wms ≥ 2πrmtmlmρstg (123)

Wns ≥ 2πrntnlnρstg (124)

The cross-sectional area is itself constrained by the compressive yield of the landing gear material and the maximum
load exerted on each strut.

2πrmtmσyc ≥
λLmNs

nmg
(125)

2πrntnσyc ≥ (Ln + Lndyn )Ns (126)

Another, typically more restrictive, structural constraint ensures the struts will not buckle. This constrains the area
moment of inertia of the strut cross section, which in turn puts upward pressure on the radius and thickness of the
struts. Again, a thin walled cylinder approximation is made. The buckling constraint assumes that no side force is
exerted on the cylinder, which is perhaps a weak assumption due to forces exerted in braking, for example, and due to
the fact that aircraft do not typically land with the main gear struts perfectly normal to the runway surface.

Lm ≤
π2EIm

K2lm2 (127)

Im = πrm
3tm (128)

Ln ≤
π2EIn

K2ln2 (129)

In = πrn
3tn (130)

A machining constraint is used to ensure that the strut walls are not too thin to be fabricated [23].

2rm

tm
≤ 40 (131)

2rn

tn
≤ 40 (132)

In addition, simple retraction space constraints are used to ensure that the struts are not too wide for the gear to fit
inside the fuselage.

2wtm + 2rm ≤ hhold (133)

2wtn + 2rn ≤ 0.8 (134)

The wheel weights and sizes can be estimated using historical relations from [16, 25], which are, again, conveniently
in monomial form. The nose gear tires are assumed to be 80% of the size of the main gear tires.

Fwm =
Lwm dtm

1000
(135)

Wwa,m = 1.2F0.609
wm

(136)

21 of 26

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

A
SS

A
C

H
U

SE
T

T
S 

IN
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

M
ar

ch
 1

2,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
20

03
 



Fwn =
Lwn dtn

1000
(137)

Wwa,n = 1.2F0.609
wn

(138)

dtm = 1.63L0.315
wm

(139)

wtm = 0.104L0.480
wm

(140)

dtn = 0.8dtm (141)

wtn = 0.8wtm (142)

Wmw = nwpsWwa,m (143)

Wnw = nwpsWwa,n (144)

Finally, the total landing gear system weight is lower bounded by accounting for the weights of each assembly. We
use an additional weight fraction to account for weight that is proportional to the weight of the wheels [25].

Waddm = 1.5Wmw (145)

Waddn = 1.5Wnw (146)

Wmg ≥ nmg
(
Wms + Wmw + Waddm

)
(147)

Wng ≥ Wns + Wnw + Waddn (148)

Wlg ≥ Wmg + Wng (149)

3. Model Results

Using fixed values representative of the benchmark aircraft, a solution was obtained for this SP. Tables of the optimal
values and the constant values used can be found in the appendix. Solving the SP took 5 GP solves and 0.388 seconds.
Although some of the solution values show good agreement with the values for the benchmark aircraft, other values,
for example the total landing gear weight, show poorer agreement. This is likely due to the relatively low fidelity
weight model used for this work.

Table 9: Solution comparison with the benchmark aircraft

Free Variable Value Estimate for benchmark aircraft

B [m] 16.3 15.6 [14]
T [m] 5.59 5.72 [14]

Wlg
[
kg

]
1500 4000 [5]

The objective function value is most sensitive to the fuselage upsweep point: a 1% increase in the fuselage upsweep
x-coordinate would result in a 1.4% increase in the weight of the landing gear, according to the model. Unsurprisingly,
the objective function is also sensitive to the weight of the aircraft: a 1% decrease in the aircraft weight would result in
a 0.98% reduction in the landing gear weight. Finally, this model predicts that landing gear weight is also sensitive to
the x-location of the CG. If the CG moves towards the tail an extra 1%, the landing gear weight is expected to decrease
by 0.96%.

V. Conclusion
In this work, signomial programming has been used to tackle aircraft design problems. More specifically, signomial
programming models have been created to find the optimal preliminary sizing of a commercial tube-and-wing aircraft’s
vertical tail, fuselage, and landing gear. In doing so, signomial programming has been demonstrated as a viable
approach to multidisciplinary aircraft design optimization, with a wide range of constraints fitting naturally into the
required formulation. The models are readily extensible and easily combined with other models, making them good
building blocks for a full aircraft model. Though not as rigorous as for geometric programs, the solution method
for signomial programs is disciplined and effective. A significant improvement in fidelity over previous geometric
programming models has been achieved thanks to the relaxed restrictions on signomial programs. Lagrange multipliers
obtained from the solution procedure mean that, in addition to finding an optimal design, the models also give local
sensitivities to fixed variables, thus giving insight into the design space.
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Appendix: Model Results
A. Vertical Tail Model

Table 10: Vertical tail model design variable solution values and constant values

Free Variables Value Units

Vertical Tail
Avt 1.81 [−]
CDvis 0.005164 [−]
CLvt 0.4505 [−]
Dvis 1698 [N]
Dwm 3112 [N]
Lmax 1.043e+06 [N]
Lvt 3.683e+04 [N]
Rec 2.946e+07 [−]
S 63.19 [m2]
S vt 31.6 [m2]
Wstruct 2662 [N]
Wvt 1331 [N]
∆xlead 14.42 [m]
∆xtrail 21 [m]
λ 0.27 [−]
τ 0.15 [−]
b 15.12 [m]
bvt 7.562 [m]
c̄ 4.638 [m]
croot 6.58 [m]
ctip 1.776 [m]
lvt 17.32 [m]
p 1.54 [−]
q 1.27 [−]
zc̄ 2.079 [m]

Vertical Tail Structure
A 3.62 [−]
Icap 3.359e-06 [−]
Lmax 1.043e+06 [N]
Mr 2.424e+05 [N]
S 63.19 [m2]
Wcap 5535 [N]
Wstruct 2662 [N]
Wweb 1120 [N]
λ 0.27 [−]
ν 0.8327 [−]
τ 0.15 [−]
b 15.12 [m]
p 1.54 [−]
q 1.27 [−]
tcap 0.0007129 [−]
tweb 0.0006414 [−]

Constants Value Units

Vertical Tail
Aeng 2.405 [m2]
CDwm 0.5 [−]
CLvmax 2.6 [−]
L f use 39 [m]
Te 1.29e+05 [N]
V1 65 [m/s]
Vc 234 [m/s]
Vne 144 [m/s]
µ 1.4e-05 [N ∗ s/m2]
ρc 0.38 [kg/m3]
ρTO 1.225 [kg/m3]
tan(ΛLE) 0.8391 [−]
clvt 0.5 [−]
e 0.8 [−]
le 4.83 [m]
xCG 18 [m]

Vertical Tail Structure
Nli f t 2 [−]
ρcap 2700 [kg/m3]
ρweb 2700 [kg/m3]
σmax,shear 1.67e+08 [Pa]
σmax 2.5e+08 [Pa]
fw,add 0.4 [−]
g 9.81 [m/s2]
rh 0.75 [−]
w 0.5 [−]
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B. Fuselage Model

Table 11: Fuselage model design variable solution values and constant values

Free Variables Value Units

A f loor 0.01569 [m2]
A f use 10.81 [m2]
Ahold 1.026 [m2]
Askin 0.01087 [m2]
D 1.35e+04 [N]
D f riction 7988 [N]
Dupsweep 5513 [N]
FF 1.076 [−]
M f loor 4.442e+05 [N ∗ m]
P f loor 1.137e+06 [N]
Qv 1.005e+05 [N ∗ m]
R f use 1.855 [m]
S bulk 21.62 [m2]
S f loor 5.686e+05 [N]
S nose 49.82 [m2]
Vbulk 0.02016 [m3]
Vcabin 315 [m3]
Vcargo 6.796 [m3]
Vcone 0.007483 [m3]
Vcyl 0.2653 [m3]
V f loor 0.04902 [m3]
Vhold 25.04 [m3]
Vluggage 18.24 [m3]
Vnose 0.04645 [m3]
Wapu 5657 [N]
Wbuoy 1517 [N]
Wcone 356.7 [N]
W f loor 6570 [N]
W f use 1.507e+05 [N]
Winsul 4307 [N]
Wluggage 1.79e+04 [N]
Wpadd 6.465e+04 [N]
Wpass 1.337e+05 [N]
Wpay 1.616e+05 [N]
Wseat 2.79e+04 [N]
Wshell 1.582e+04 [N]
Wskin 8791 [N]
Wwindow 1.062e+04 [N]
λcone 0.4 [−]
φ 0.1749 [−]
ρcabin 0.8711 [kg/m3]
σx 3.831e+07 [N/m2]
σθ 1.034e+08 [N/m2]
τcone 1.034e+08 [N/m2]
f 10.68 [−]
h f loor 0.3712 [m]
hhold 0.4838 [m]
lcone 10 [m]
l f loor 28.12 [m]
l f use 39.61 [m]
lnose 5.2 [m]
lshell 24.41 [m]
npass 167 [−]
nrows 31 [−]
pλv 1.6 [−]
qλv 1.3 [−]
tcone 4.494e-05 [m]
tshell 0.001259 [m]
tskin 0.0009324 [m]
w f loor 3.125 [m]
xshell1 5.2 [m]

Constants Value Units

LF 0.898 [−]
Lvmax 3.5e+04 [N]
Nland 6 [−]
R 287 [J/K/kg]
S PR 6 [−]
Tcabin 300 [K]
V∞ 234 [m/s]
W′′f loor 60 [N/m2]
W′′insul 22 [N/m2]
W′seat 150 [N]
W′window 435 [N/m]
Wavg.pass 180 [lb f ]
Wcargo 1e+04 [N]
Wcarryon 15 [lb f ]
Wchecked 40 [lb f ]
W f ix 3000 [lb f ]
∆h 1 [m]
∆p 5.2e+04 [Pa]
µ 1.4e-05 [N ∗ s/m2]
ρ∞ 0.38 [kg/m3]
ρbend 2700 [kg/m3]
ρcargo 150 [kg/m3]
ρcone 2700 [kg/m3]
ρ f loor 2700 [kg/m3]
ρluggage 100 [kg/m3]
ρskin 2700 [kg/m3]
σ f loor 2.069e+08 [N/m2]
σskin 1.034e+08 [N/m2]
τ f loor 2.069e+08 [N/m2]
bv 7 [m]
cvt 4 [m]
fapu 0.035 [−]
f f add 0.2 [−]
f f rame 0.25 [−]
flugg,1 0.4 [−]
flugg,2 0.1 [−]
fpadd 0.4 [−]
fstring 0.35 [−]
g 9.81 [m/s2]
nseat 186 [−]
pcabin 7.5e+04 [Pa]
ps 31 [in]
rE 1 [−]
waisle 0.51 [m]
wseat 0.5 [m]
wsys 0.1 [m]
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C. Landing Gear Model

Table 12: Landing gear model design variable solution values and constant values

Free Variables Value Units

B 16.29 [m]
Eland 3.809e+05 [J]
Fwm 7159 [−]
Fwn 643.7 [−]
Im 7.545e-06 [m4]
In 8.916e-07 [m4]
Lm 6.435e+05 [N]
Ln 1.609e+05 [N]
Lndyn 6.617e+04 [N]
Lwm 1.609e+05 [N]
Lwn 8.044e+04 [N]
S 0.2959 [m]
T 5.585 [m]
Waddm 3565 [N]
Waddn 822.2 [N]
Wlg 1.46e+04 [N]
Wmg 1.311e+04 [N]
Wms 612 [N]
Wmw 2377 [N]
Wng 1488 [N]
Wns 117.4 [N]
Wnw 548.1 [N]
Wwa,m 267.2 [lb f ]
Wwa,n 61.61 [lb f ]
∆xm 3.257 [m]
∆xn 13.03 [m]
tan(φ) 0.2679 [−]
tan(ψ) 1.963 [−]
doleo 0.3735 [m]
dtm 1.179 [m]
dtn 0.9041 [m]
lm 2.322 [m]
ln 1.577 [m]
loleo 0.7399 [m]
rm 0.06639 [m]
rn 0.04296 [m]
tm 0.008205 [m]
tn 0.00358 [m]
wtm 0.4088 [m]
wtn 0.327 [m]
xm 21.29 [m]
xn 5 [m]
xCG 18.03 [m]
ym 2.793 [m]

Constants Value Units

E 205 [GPa]
K 2 [−]
Ns 2 [−]
W0 8.044e+05 [N]
ηs 0.8 [−]
λ 2.5 [−]
ρst 7850 [kg/m3]
σyc 4.7e+08 [Pa]
tan(γ) 0.08749 [−]
tan(φmin) 0.2679 [−]
tan(ψmax) 1.963 [−]
tan(θTO) 0.2679 [−]
dnacelle 2 [m]
g 9.81 [m/s2]
hhold 1 [m]
hnacelle 0.5 [m]
nmg 2 [−]
nwps 2 [−]
poleo 1800 [psi]
w 10 [ f t/s]
xCG0 18 [m]
xup 28 [m]
yeng 4.83 [m]
zCG 2 [m]
zwing 0.5 [m]
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