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Abstract

This thesis presents a full 1D core+fan flowpath turbofan optimization model, based
on first principles, and meant to be used during aircraft conceptual design optimiza-
tion. The model is formulated as a signomial program, which is a type of optimization
problem that can be solved locally using sequential convex optimization. Signomial
programs can be solved reliably and efficiently, and are straightforward to integrate
with other optimization models in an all-at-once manner. To demonstrate this, the
turbofan model is integrated with a simple commercial aircraft sizing model. The
turbofan model is validated against the Transport Aircraft System OPTimization
turbofan model as well as two Georgia Tech Numerical Propulsion System Simulation
turbofan models. Four integrated engine/aircraft parametric studies are performed,
including a 2,460 variable multi-mission optimization that solves in 28 seconds.
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Nomenclature

a = speed of sound

α = engine by-pass ratio

A = flow area

ck = constant in a monomial, posynomial, or signomial

CD = aircraft drag coefficient

CL = aircraft lift coefficient

Cp = working fluid constant pressure specific heat

D = drag force

η = efficiency

F = total engine thrust

fc = cooling flow by-pass ratio (ṁcool/ṁcore)

ff = fuel/air ratio

f̄o = one minus the percent of core mass flow bled for pressurization, electrical generation, etc.

F6 = core engine thrust

F8 = fan engine thrust

Fsp = overall specific thrust

γ = ratio of working fluid specific heats

Gf = fan gearing ratio

h, ht = static and stagnation enthalpy

hf = fuel heat of combustion

Mengine = engine mass

Nf = normalized fan spool speed

N1 = normalized LPC spool speed
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N2 = normalized HPC spool speed

ṁ = mass flow

m̄ = corrected mass flow

M = Mach number

m(u) = monomial function of u

P, Pt = static and stagnation pressure

π(·) = pressure ratio across component (·)

p(u) = posynomial function of u

R = specific gas constant

ρ = air density

ruc = cooling flow velocity ratio

s(u) = signomial function of u

T, Tt = static and stagnation temperature

TSFC= thrust specific fuel consumption

u = vector of all decision variables

u = flow velocity

V = aircraft velocity

Wengine = engine weight

Z = total/static temperature ratio

(·)b = combustor quantity

(·)cool = cooling flow quantity

(·)core = core stream quantity

(·)d = diffuser quantity

(·)...D = nominal design point quantity

(·)f = fan quantity

(·)fan = fan stream quantity

(·)fn = fan nozzle quantity

(·)HP = high pressure shaft quantity

(·)HPC = high pressure compressor quantity

(·)...i = quantity at engine station i
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(·)LP = low pressure shaft quantity

(·)LPC = low pressure compressor quantity

(·)SL = sea level quantity

(·)t = stagnation quantity

(·)total = fan and core stream quantity

(·)+1 = (·) plus one
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Acronyms

BLI = boundary layer ingestion

BPR = by-pass ratio

FPR = fan pressure ratio

GP = geometric program

HP = high pressure

HPC = high pressure compressor

HPT = high pressure turbine

LP = low pressure

LPC = low pressure compressor

LPT = low pressure turbine

NLP = nonlinear program

NPSS = Numerical Propulsion System Simulation

OPR = overall pressure ratio

SP = signomial program

TASOPT = Transport Aircraft System OPTimization

TOC = top of climb
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Chapter 1

Introduction

A key goal of conceptual aircraft design is to quantify basic trade offs between com-

peting mission requirements and between the various aircraft sub-systems. For an

exhaustive study, multiple design parameter sweeps must be performed, ideally with

an optimum conceptual aircraft produced for each point examined. Because typical

aircraft design-parameter spaces are quite large, such trade studies demand a reliable

and efficient system-level optimization method. As noted by Martins[21], there exists

a need for new multidisciplinary design optimization (MDO) tools that exhibit fast

convergence for medium and large scale problems. In pursuit of this goal, Hoburg et

al.[15] and Kirschen et al.[19] have proposed formulating aircraft conceptual design

models as geometric programs (GP) or signomial programs (SP). Geometric and sig-

nomial programs enable optimization problems with thousands of design variables to

be reliably solved on laptop computers in a matter of seconds.

Such speed and reliability is possible because these formulations can be solved via

convex optimization (in the case of GP), or via sequential convex optimization (in the

case of SP). One limitation of GP methods is that all physical model equations must

be posed as either posynomial inequality constraints or monomial equality constraints,

which at first seems far too restrictive. One objective of this thesis is to show that

this is not necessarily the case, and that even quite complex physical models can

be recast into the necessary forms. This is accomplished in two ways. First, many,

but not all, expressions that arise in turbofan design are directly compatible with
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GP or can be closely approximated by posynomial constraints. Second, relationships

that are not directly GP-compatible are often SP-compatible. SP is a non-convex

extension of GP that can be solved locally as a sequence of GPs. While SPs sacrifice

guarantees of global optimality, they can be solved far more reliably than general

nonlinear programs (NLPs).

The specific example considered is the turbofan model in the Transport Aircraft

System OPTimization (TASOPT)[10] conceptual design tool, which uses traditional

optimization techniques. This model is a full 1D core+fan flowpath simulation based

on first principles, which here will be recast into an SP-compatible form. This enables

the construction of SP-compatible aircraft conceptual design models that address the

complex design tradeoffs between engine and airframe parameters by treating the

parameters as design variables. Such methods can produce much more realistic and

higher-fidelity conceptual designs as starting points for subsequent preliminary and

detailed design, with more reliability and much less time than would be required by

the alternative MDO methods that combine traditional engine and airframe modules.

The SP-compatible engine model developed here is compared against TASOPT

and two Georgia Tech Numerical Propulsion System Simulation (NPSS)[17] models

to demonstrate that it produces the correct results. To demonstrate its effectiveness

for SP aircraft optimization, the model is integrated into a simple commercial trans-

port aircraft sizing optimization problem. Example aircraft parametric studies are

presented, including a 2,460 variable multi-mission optimization problem that solves

in 28 seconds.

1.1 Optimization Formulation

1.1.1 Model Architecture

The presented engine model is formulated as a single multi-point optimization prob-

lem with no engine on/off design point distinctions. All constraints are applied at

every point in the flight, and the model selects the engine which most optimally meets

20
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Figure 1-1: Engine model architecture.

all constraints. This, coupled with the fact SPs are solved all at once (i.e. there is

no order of operations), greatly simplifies integrating the engine into a full aircraft

system model. Figure 1-1 illustrates the engine model’s overall architecture. It is

worth noting no initial guesses are supplied to the presented model.

1.1.2 Solution Method

The models in this thesis consist of sets of constraints that are compatible with SP. All

SPs presented in this thesis were solved on a laptop computer using a combination of

GPkit[7] and MOSEK[4]. GPkit, developed at MIT, is a python package that enables

the fast and intuitive formulation of geometric (GP) and signomial programs. GPkit

has a built in heuristic for solving SPs as a series of GP approximations. GPkit binds

with open source and commercial interior point solvers to solve individual GPs. GPkit

source code is available at https://github.com/hoburg/gpkit and the turbofan

engine model is available at https://github.com/hoburg/turbofan.

21

https://github.com/hoburg/gpkit
https://github.com/hoburg/turbofan


1.1.3 Geometric Programming

Introduced in 1967 by Duffin et al. [12], a geometric program (GP) is a type of

constrained optimization problem that becomes convex after a logarithmic change

of variables. Modern interior point methods allow a typical sparse GP with tens of

thousands of decision variables and tens of thousands of constraints to be solved in

minutes on a desktop computer [6]. These solvers do not require an initial guess and

guarantee convergence to a global optimum, assuming a feasible solution exists. If

a feasible solution does not exist, the solver will return a certificate of infeasibility.

These impressive properties are possible because a GP’s objective and constraints

consist of only monomial and posynomial functions, which can be transformed into

convex functions in log space.

A monomial is a function of the form

m(u) = c
n∏
j=1

u
aj
j (1.1)

where aj ∈ R, c ∈ R++ and uj ∈ R++. An example of a monomial is the common

expression for lift, 1
2
ρV 2CLS. In this case, u = (ρ, V, CL, S), c = 1/2, and a =

(1, 2, 1, 1).

A posynomial is a function of the form

p(u) =
K∑
k=1

ck

n∏
j=1

u
ajk
j (1.2)

where ajk ∈ R, ck ∈ R++ and uj ∈ R++. A posynomial is a sum of monomials.

Therefore, all monomials are also one-term posynomials.

A GP minimizes a posynomial objective function subject to monomial equality

and posynomial inequality constraints. A GP written in standard form is

minimize p0(u)

subject to pi(u) ≤ 1, i = 1, ...., np,

mi(u) = 1, i = 1, ..., nm

(1.3)
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where pi are posynomial functions, mi are monomial functions, and u ∈ Rn
++ are

the decision variables. Once a problem has been formulated in the standard form

(Equation 1.3), it can be solved efficiently.

1.1.4 Signomial Programming

It is not always possible to formulate a design problem as a GP. This motivates the

introduction of signomials. Signomials have the same form as posynomials

s(u) =
K∑
k=1

ck

n∏
j=1

u
ajk
j (1.4)

but the coefficients, ck ∈ R, can now be any (including non-positive) real numbers.

A signomial program (SP) is a generalization of GP where the inequality con-

straints can be composed of signomial constraints of the form s(u) ≤ 0. The log

transform of an SP is not a convex optimization problem, but it is a difference of

convex optimization problem that can be written in log-space as

minimize f0(x)

subject to fi(x)− gi(x) ≤ 0, i = 1, ....,m
(1.5)

where fi and gi are convex.

There are multiple algorithms that reliably solve signomial programs to local op-

tima [5, 20]. This is done by solving a sequence of GPs, where each GP is a local

approximation to the SP, until convergence occurs. It is worth noting that the intro-

duction of even a single signomial constraint to any GP turns the GP into a SP, thus

losing the guarantee of solution convergence to a global optimum. A favorable prop-

erty of SP inequalities is that the feasible set of the convex approximation is always

a subset of the original SP’s feasible set, as depicted in Figure 1-2. This removes the

need for trust regions and makes solving SPs substantially more reliable than solving

general nonlinear programs.

The previously presented difference of convex technique works only for signomial
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Figure 1-2: The non-convex signomial inequality drag constraint
CD ≥ f(CL) and GP approximations about two different points.

inequality, posynomial inequality, and monomial equality or inequality constraints.

Signomial equality constraints can be approximated by monomials, as shown in Fig-

ure 1-3. Signomial equalities are the least desirable type of constraint due to the

approximations involved. This work contains five signomial equality constraints. For

additional details on how signomial equalities are approximated, see Opgenoord et

al.[24]. For intuition on when signomial equality constraints are required, see Ap-

pendix D.

1.2 Terminology

Before proceeding, it is useful to introduce some of the vocabulary used to describe

this work.
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after 1 GP iteration

Projected optimal point
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Figure 1-3: The signomial equality constraint CD = f(CL) and its
approximation.

1.2.1 Models

A model is a set of GP and/or SP compatible constraints. The input to a model is

the value of any fixed variables or constants appearing the model. Two models that

share variables may be linked by concatenating their constraints.

1.2.2 GP- and SP-compatibility

A constraint is GP-compatible if it can be written as either a monomial equality

(Equation 1.1) or a posynomial inequality (Equation 1.2). A model is GP-compatible

if its objective is a monomial or posynomial and all its constraints are GP compatible.

A constraint is SP-compatible if it can be written as a signomial inequality (Equation

1.4) or equality. A model is SP-compatible if its objective is a monomial, posynomial,

or ratio of posynomials and all its constraints can be written as either monomial

equalities, posynomial inequalities, signomial inequalities, or signomial equalities.
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1.2.3 Static and Performance Models

The presented model is a multi-point optimization problem. To formulate the multi-

point problem, two models are created for each engine component - a static and

a performance model. The static model contains all variables and constraints that

do not change between operating points, such as engine weight and nozzle areas.

Performance models contain all constraints and variables that do change between

operating points. For example, all constraints involving fluid states are contained in

performance models. To simulate multiple engine operating points, the performance

models are vectorized. When a model is vectorized, all the variables it contains

become vectors, with each element corresponding to a different engine operating point.

Figure 1-1 provides a visual representation of static and performance models.
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Chapter 2

Model Derivation

Constraint derivation follows the general framework of the TASOPT turbofan model[10],

with minor changes to facilitate the removal on the on-design/off-design distinction.

TASOPT station numbering was adopted and is presented in Figure 2-1. The model

assumes a two spool engine with two compressors and two turbines. The model can

support a geared fan. Values of Cp and γ are assumed for each engine component and

presented in Table 2.1. Isentropic relations were used to model working fluid state

changes across turbomachinery components and a shaft power balance was enforced

on both the low and high pressure shafts. Details of these models are discussed in Ap-

pendices A and B. Remaining submodels are described in the following sub-sections.
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this thesis.
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Table 2.1: Assumed gas properties for each engine component

Engine Component Cp [J/kg/K] γ Corresponding Air
Temperature [K]

Diffuser 1005 1.4 260

LPC 1008 1.398 350

HPC 1099 1.354 800

Combustor 1216 1.313 1500

HPT 1190 1.318 1300

LPT 1142 1.335 1000

Core Exhaust 1029 1.387 500

Fan Exhaust 1005 1.4 273

2.1 Combustor and Cooling Flow Mixing Model

The combustor and cooling flow constraints serve two purposes - to determine the

fuel mass flow percentage and to account for the total pressure loss resulting from

the mixing of the cooling flow and the working fluid in the main flow path. The flow

mixing model is taken directly from TASOPT[10].

The fuel mass flow and Tt4 are constrained via an enthalpy balance (Equation 2.1)

while Equations 2.2 and 2.3 determine the remaining station 4 states. ηb is the burner

efficiency, a value less than one indicates a portion of injected fuel is not burned. The

specified fc is the cooling flow bypass ratio whose typical values range from 0.2-0.3,

with lower values indicating a higher engine technology level. Cpfuel and hf are taken

as constants equal to 2010 J/kg/K and 43.003 MJ/kg respectively. Ttf is the fuel’s

temperature when injected into the combustor and πb is the combustor pressure ratio.

Both are user inputs.

ηbffhf ≥ (1− fc)(ht4 − ht3) + Cpfuelff(Tt4 − Ttf ) (2.1)
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ht4 = CpcTt4 (2.2)

Pt4 = πbPt3 (2.3)

It is assumed the cooling flow is unregulated and engine pressure ratios are rela-

tively constant so fc will not change between operating points. Further, it is assumed

the cooling flow is discharged entirely over the first row of inlet guide vanes (station

4a) and mixes completely with the main flow before the first row of turbine blades

(station 4.1). The first row of inlet guide vanes requires the majority of the cooling

flow, justifying this assumption.

The mixed out flow temperature at station 4.1 is computed with the enthalpy

balance in Equation 2.4. Note this is a signomial equality.

ht4.1ff+1 = (1− fc + ff)ht4 + fcht3 (2.4)

The mixed-out state at station 4.1 is computed in terms of the temperature ratio

Z4a, which is introduced for GP compatibility.

Z4a = 1 +
1

2
(γ − 1)(M4a)

2 (2.5)

P4a = Pt4(Z4a)
− γi
γi−1 (2.6)

u4a = M4a

√
γ4aRTt4/Z4a (2.7)

Cooling flow velocity, ucool, is defined by the user input cooling flow velocity ratio

ruc.

ucool = rucu4a (2.8)

Static pressure rise during mixing is neglected and the station 4.1 state is computed
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using stagnation relations. Equation 2.10 is a signomial equality constraint.

Pt4.1 = P4a

(
Tt4.1
T4.1

) γi
γi−1

(2.9)

T4.1 = Tt4.1 −
1

2

u4.1
2

Cpc
(2.10)

Rather than introduce a full momentum balance, this model approximates u4.1 as

the geometric average of core and cooling flow velocities.

ff+1u4.1 =
√
ff+1u4aαcoolucool (2.11)

2.2 Area, Mass Flow, and Speed Constraints

Either the engine’s thrust or the turbine inlet temperature must be constrained via

Equation 2.12 or 2.13. In a full aircraft optimization problem, Fspec can be linked to

thrust requirements in an aircraft performance model. When the engine model is run

in isolation, Fspec or Tt4.1 must be specified by the user.

F = Fspec (2.12)

Tt4.1 = Tt4spec (2.13)

Component speed ratios are determined by the turbo-machinery maps (Section

2.3). Only the ratio of component speed to the component’s nominal design speed

is considered, so the nominal design speed is arbitrarily set to one. Thus, an LPC

speed of N1 = 1.1 should be thought of as an LPC speed 10 percent faster than the

components nominal design speed, not a value 10 percent over max RPM. This model

does not attempt to constrain actual RPM values.

The fan and LPC both lie on the low pressure shaft so their speeds are correlated

via Equation 2.14, which allows for a user selected gearing ratio Gf . Additionally,
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a maximum allowable speed is set for the fan and compressors. The max speed of

1.1 is estimated from TASOPT output. If an upper bound is not placed on speed,

the optimizer will indefinitely increase component speed to drive OPR higher. When

solving across an engine mission profile, the upper speed bound will only be achieved

at the engine’s most demanding operating point.

Nf = GfN1 (2.14)

N1 ≤ 1.1 (2.15)

N2 ≤ 1.1 (2.16)

Constraints on the mass flux through engine components are used to ensure each

engine operating point corresponds to an engine of the same physical size. The station

5 and 7 exit states are determined using user specified nozzle pressure ratios as well

as isentropic and stagnation relations.

Pt5 = πtnPt4.9 (2.17)

Pt7 = πfnPt2 (2.18)

Pi ≥ P0 (2.19)

Pi
Pti

=

(
Ti
Tti

) γ
γ−1

(2.20)

(
Ti
Tti

)−1

≥ 1 + 0.2(Mi)
2 (2.21)

Equation 2.22 is a deviation from constraints in traditional engine models that
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use Newton’s method or a comparable iterative procedure. In many methods, M5

and M7 are set equal to 1 if M6 or M8 is respectively greater than 1 so that the exit

nozzle is choked. If M6 or M8 is less than 1, then M5 and M7 are constrained to

be less than 1. A switch is used to change constraints mid solve. It is not possible

to switch constraints during a GP solve. Therefore, M5 and M7 are constrained to

be less than or equal to 1, regardless of M6 and M8. For the mild choking typical

in efficient turbofans, the effects of this reformulation are negligible, as confirmed by

Section 3.

Mi ≤ 1 (2.22)

Equations 2.23 to 2.33 set A2, A2.5, A5, and A7. Note M2.5 is set by the user and

M2 is either linked to an aircraft performance model or set by the user.

ai =
√
γRTi (2.23)

ui = aiMi (2.24)

ρi =
Pi
RTi

(2.25)

In the static property calculations, the temperature ratio Zi is again introduced

for GP compatibility.

Zi = 1 +
γi − 1

2
Mi

2 (2.26)

Pi = Pti(Zi)
γ

1−γ (2.27)

Ti = TtiZ
−1
i (2.28)
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hi = CpiTi (2.29)

In equation 2.30, the value of Cpi − R is precomputed and substituted into the

constraint to make it GP compatible.

ui = Mi

√
CpiRTi/(Cpi −R)) (2.30)

ṁfan = ρ7A7u7 (2.31)

ṁcoref̄o = ρ5A5u5/ff+1 (2.32)

α = ṁfan/ṁcore (2.33)

Full turbine maps are not used to constrain turbine mass flow. Instead, it is

assumed the entry to each turbine is always choked. This leads to two constraints,

each setting the corrected mass flow at turbine entry equal to the estimated nominal

value.

m̄HPTD = m̄HPCff+1f̄o(Pt2.5/Pt4.1)
√
Tt4.1/Tt2.5 (2.34)

m̄LPTD = m̄LPCff+1f̄o(Pt1.8/Pt4.5)
√
Tt4.5/Tt1.8 (2.35)

The optimized nominal core mass flow is computed via equation 2.36. T̂i and P̂i

represent the estimated nominal state at engine station i. The values of T̂t4 , P̂t2 ,

and T̂t2 are set by the user while all other T̂ and P̂ values are estimated using the

isentropic relations, component design pressure ratios, and a shaft power balance.

This process is shown in equation set 2.37. Nominal mass flows are allowed to vary

plus or minus 30 percent from their estimated values to account for uncertainty in

the estimation process and ensure that if the nominal design condition is estimated

33



to occur at the aircraft’s average altitude, the optimizer can place the nominal state

anywhere in the flight. Optimization of the nominal state enables removal of the

apriori specification of an engine on-design point.

m̄componentD ≤ 1.3ff+1f̄oṁcoreD

√
T̂ti/Tref/(P̂ti/Pref) (2.36)

m̄componentD ≥ 0.7ff+1moffṁcoreD

√
T̂ti/Tref/(P̂ti/Pref)

P̂i = πcomponentP̂i−1

T̂ti = T̂ti−1
(πcomponent)

γ−1
γηi

T̂t4.5 = T̂t4.1 − (T̂t3 − T̂t2.5) (2.37)

T̂t4.9 = T̂t4.5 − (T̂t2.5 − T̂t2.1)

π̂HPT =

(
T̂t4.5

T̂t4.1

) ηiγ

γ−1

P̂t4.5 = π̂HPTP̂t3

2.3 Fan and Compressor Maps

Fan and compressor maps are required to accurately constrain fan and compressor

pressure ratios. Every engine has different compressor maps that result from detailed

turbo-machinery design. The present model does not attempt to take into account

factors causing variations in turbo-machinery maps. Instead, a simple compressor

and fan map is assumed and applied to all engines. As argued in section 3, this is

accurate enough for aircraft conceptual design optimization.

GP compatible fan and compressor maps were derived from NASA’s Energy Effi-

cient Engine (E3) program[13] turbomachinery maps, which are presented in Figures

2-2 and 2-3. These are also the maps used in TASOPT. Blue curves are lines of

constant component speed and red curves are the estimated engine operating line, or
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spine. Each spine can be parameterized as either π = f(m̄) or π = f(N), where m̄ is

normalized corrected mass flow and N is component speed. The normalized corrected

mass for for each components is defined below.

m̄HPC = ṁcore

√
T2.5/Tref/(Pt2.5/Pref) (2.38)

m̄LPC = ṁcore

√
T2/Tref/(Pt2/Pref) (2.39)

m̄fan = ṁfan

√
T2/Tref/(Pt2/Pref) (2.40)

A GP compatible monomial approximation to the functions π = f(m̄) and π =

f(N) was developed with GPfit[16, 18]. The approximations for both the compressor

and fan map spine fits are given by Equations 2.41 through 2.44 and plotted in Figures

2-4 and 2-5.

πcomp = 20.1066(N)5.66 (2.41)

πcomp = 25.049(m̄)1.22 (2.42)

πfan = 1.6289(Nf)
0.871 (2.43)

πfan = 1.7908(m̄)1.37 (2.44)

The fan map spine was only fit for speeds greater than 0.6. Single term fits are

monomials that must pass through the origin, limiting their ability to capture fan

trends for low speeds. During a typical flight, the low pressure spool speed (N1)

will rarely, if ever, drop below 0.6. The fitted map, combined with the constraint

all pressure ratios are greater than 1, places an implicit lower bound on N1 and Nf

which may lead to modeling inaccuracy at low throttle settings. This is acceptable
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Figure 2-2: E3 fan map with an estimated engine operating line in red.
The map’s design pressure ratio is 1.7.

due to the proportionally small amount of fuel burned at low throttle settings. A two

term polynomial fit yields a better approximation of the fan map, but was not used

because it adds an additional signomial constraint.

Equations 2.45 through 2.47 are fan and compressor map approximations obtained

by scaling the E3 map fits to an arbitrary design pressure ratio and constraining the

pressure ratio be within 10 percent of the spine mass flow fit. This allows the operating

point to move off the operating line while ensuring the operating point does not move

into either the stall or surge regime. The user must specify at a minimum either

fan, LPC, and HPC design pressure ratios or a maximum turbine inlet temperature

(Tt4.1). The user may specify all four values. Setting fan, LPC, and HPC design

pressure ratios values scales the maps and is distinct from specifying a full engine on-

design operating point. If component design pressure ratios are left free, a maximum

turbine inlet temperature must be specified so the cooling model prevents OPR from

being driven to infinity.
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Figure 2-3: E3 compressor map with an estimated engine operating line
in red. The map’s design pressure ratio is 26.

πfan

(
1.7

πfD

)
= 1.6289(Nf)

0.871

πfan

(
1.7

πfD

)
≥ (0.9)1.7908(m̄f )

1.37 (2.45)

πfan

(
1.7

πfD

)
≤ (1.1)1.7908(m̄f )

1.37

πLPC

(
26

πLPCD

)
= 20.1066(N1)5.66

πLPC

(
26

πrmLPCD

)
≥ (0.9)25.049(m̄LPC)1.22 (2.46)

πLPC

(
26

πrmLPCD

)
≤ (1.1)25.049(m̄LPC)1.22
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Figure 2-4: Monomial approximations to the E3 compressor map spine.
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Figure 2-5: Monomial approximations to the E3 fan map spine.

πHPC

(
26

πHPCD

)
= 20.1066(N2)5.66

πHPC

(
26

πHPCD

)
≥ (0.9)25.049(m̄HPC)1.22 (2.47)

πHPC

(
26

πHPCD

)
≤ (1.1)25.049(m̄HPC)1.22

It is possible to fit a full compressor map instead of just the spine. However, there

is no way to distinguish valid map points from points in the surge/stall regime. The

optimizer will push the operating point towards these sections of the map, resulting

in a physically invalid solution.
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2.4 Exhaust State Model

Thrust is determined with a momentum balance. Station 6 (core exhaust) and 8

(fan exhaust) velocities are computed by equations 2.48 to 2.52 which employ the

stagnation relations and assume isentropic flow expansion.

(
Pi
Pti

) γi−1

γi

=
Ti
Tti

(2.48)

Pi = P0 (2.49)

hti = CpiTti (2.50)

hi = CpiTi (2.51)

ui
2 + 2hi ≤ 2hti (2.52)

Fan and core thrust (F8 and F6) are computed with a momentum balance and

summed to set the total thrust.

F8/(αṁcore) + u0 ≤ u8 (2.53)

F6/(f̄oṁcore) + u0 ≤ u6 (2.54)

F ≤ F6 + F8 (2.55)

The specific thrust and corresponding thrust specific fuel consumption then follow.

Fsp = F/(a0α+1ṁcore) (2.56)
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TSFC =
ffg

Fspa0α+1

(2.57)

2.5 Engine Weight

In an aircraft optimization problem there is a downward pressure on engine weight.

Consequently, the TASOPT[10] engine weight model can be relaxed into a posynomial

inequality constraint. The TASOPT engine weight model is a fit to production engine

data and does not account for the weight of a gearbox in a geared turbofan. The

GP compatible engine mass constraint, taken from TASOPT[10], is presented below.

ṁtotal is defined by Equation 2.59.

Mengine ≥
ṁtotal

(100lbm/s)α+1

(
1684.5 lbm + 17.7 lbm

πfπLPCπHPC

30
+ (2.58)

1662.2 lbm

(
α

5

)1.2)

ṁcore is written in the equivalent form ṁtotal/(α+1) so an increase in either core or

fan mass flow corresponds to an increase in engine weight, placing required downward

pressure on both mass flows.

ṁtotal ≥ ṁcore + ṁfan (2.59)
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Chapter 3

Model Validation

The presented model was validated against the output of a CFM56-7B27 like NPSS

model, a GE90-94B like NPSS model, and TASOPT. The NPSS models were devel-

oped by Georgia Tech with publicly available data under the FAA’s Environmental

Design Space effort[22]. The NPSS output was provided by NASA. The TASOPT

data was taken from a 737-800 optimization run. The TASOPT engine output should

mirror that of Georgia Tech’s CFM56 like model because the CFM56-7B family pow-

ers all 737 Next Gen aircraft[1]. The intent of the validation studies was to verify the

model’s physics modeling, not to find the most optimal engine. Essentially, during

validation the model was used for engine analysis instead of optimization.

In all validation cases, BPR was constrained to be less than the validation data’s

max BPR. This prevents BPR from growing without bound. During validation, the

objective function was the sum of all climb TSFCs plus ten times the cruise TSFC.

Cruise TSFC was weighted by a factor of ten to capture the fact that a commercial

aircraft spends the majority of each flight in cruise. Optimizing TSFC does not

apply a downward pressure to engine weight. Thus, engine weight was capped at the

simulated engine’s predicted/actual engine weight.

objective =
∑

TSFCclimb + 10TSFCcruise (3.1)

Component polytropic efficiencies, duct pressure losses, cooling flow bypass ratio,
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Table 3.1: Input values used in all three validation cases.

Variable Value Units

Ttf 435 K

Cp4.1 1.280 KJ/kg/K

Cp4.5 1.184 KJ/kg/K

Table 3.2: The number of GP solves and solution time for each
validation case.

Validation Case Number of GP solves Solution Time [s]

CFM56 9 5.73

TASOPT 6 3.31

GE90 10 4.34

and max BPR are estimated from TASOPT/NPSS output. To mitigate errors due

to the SP model’s assumed gas properties, TASOPT computed turbine Cp values

were used in all three validation cases (NPSS computed Cp was not available in

the provided output). These values, along with the assumed fuel temperature, are

presented in Table 3.1.

Validation solution speeds are presented in Table 3.2.

3.1 NPSS CFM56 Validation

The SP model’s input values are given in Table 3.3. The SP model was constrained

by two operating points, on-design and TOC, detailed in Table 3.4. The cruise and

TOC operating points have similar ambient conditions and thrust requirements. The

SP model should place the on-design point near the NPSS on-design point, producing

little variation in predicted TSFC. Validation results are given in Table 3.5.

The SP turbofan model was solved for two different hf values. Typically, the

SP model has an hf of 43.003 MJ/kg. However, Georgia Tech’s NPSS model has

an implied hf value of 40.8 MJ/kg, 5.12 percent less than SP model’s value and 2
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Table 3.3: Input values used for CFM56 engine validation.

Variable Value Variable Value

πfD 1.685 αmax 5.105

πLPCD
1.935 fc 0.19036

πHPCD
9.369 ηfan 0.9005

ηb 0.9827 ηLPC 0.9306

Gf 1 ηHPC 0.9030

f̄o 0.9556 ηHPT 0.9030

ηLPT 0.8851 ηHP, ηLP 0.97

πtn 0.98 πb 0.94

πd 0.98 πfn 0.98

Wengine 23,201 N

Table 3.4: The two operating points used during CFM56 validation.

Flight Condition Altitude [ft] Mach Number Thrust [lbf]

TOC 35,000 0.8 5,961.9

On-Design (cruise) 35,000 0.8 5,496.4

MJ/kg below the minimum hf of Jet A[23]. Solving the SP model with an hf of 40.8

MJ/kg reduces the percent error at each operating point by approximately 5 percent.

The remaining error can be accounted for by variations in component maps and gas

properties.

3.2 TASOPT Validation

The SP turbofan model was validated against three TASOPT operating points: take-

off, TOC, and on-design. The parameters for each operating point are given in Table

3.6. The constant input values are given in Table 3.7. Limiting the SP engine weight
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Table 3.5: NPSS CFM56 validation results, expected to be similar when
hf = 40.8 MJ/kg.

Flight Condition Predicted
TSFC [1/hr]

NPSS TSFC
[1/hr]

% Dif-
ference

On Design (SP hf = 43.003 MJ/kg) 0.6335 0.6793 -6.74

On Design (SP hf = 40.8 MJ/kg) 0.6679 0.6793 -1.68

Top of Climb (SP hf = 43.003 MJ/kg) 0.6431 0.6941 -7.34

Top of Climb (SP hf = 40.8 MJ/kg) 0.6780 0.6941 -2.31

TASOPT On-Design (implied hf = 42.68
MJ/kg)

0.63403 0.6941 -6.66

to the TASOPT engine weight results in TSFC errors of 10.6 percent, 18.0 percent,

and 7.9 percent at takeoff, TOC, and the on-design point (cruise) respectively. This

error results from the engine weight constraint, Equation 2.58, as well as the fan and

compressor maps (Section 2.3), which set the component pressure ratios, placing an

implicit upper bound on engine mass flow. At the on-design point, the SP engine

has a core mass flow 15.6 percent lower than the TASOPT engine. To match the

TASOPT engine’s thrust, the SP engine must impart a larger velocity change to the

working fluid; this increases TSFC. TASOPT[10] uses a different approximation to

the E3 fan and compressor maps which allow its engines to achieve a greater mass

flow for a given engine weight.

If the SP engine weight is instead capped at 110 percent of the TASOPT engine

weight, the mass flow discrepancy is reduced to 0.1 percent. The TSFC errors for this

case are presented in in Table 3.8. Note the on-design TSFC error is now less than

one percent. No matter the cap on engine weight, the greatest TSFC error occurs at

the TOC condition. At TOC, the low pressure spool is at its max allowed speed of

1.1. As discussed in section 2.3, the SP model’s fan map is conservative, particularly

for high fan speeds. At a spool speed of 1.1 the SP model predicts a FPR of 1.75 while

TASOPT has a FPR of 1.87, 6.28 percent higher. The SP model’s lower FPR causes

the engine to produce more core thrust, lowering efficiency and increasing TSFC.
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Table 3.6: The three operating points used when validating the
presented model against TASOPT.

Flight Condition Altitude [ft] Mach Number Thrust [lbf]

Take-Off 0 0.223 21,350

TOC 35,000 0.8 6,768

On-Design (cruise) 35,000 0.8 4,986

Table 3.7: Input values used for TASOPT engine validation.

Variable Value Variable Value

πfD 1.685 αmax 5.103

πLPCD
4.744 fc 0.19036

πHPCD
3.75 ηfan 0.8948

ηb 0.985 ηLPC 0.88

Gf 1 ηHPC 0.87

f̄o 0.972 ηHPT 0.899

ηLPT 0.889 ηHP, ηLP 0.97

πtn 0.989 πb 0.94

πd 0.998 πfn 0.98

Wengine 35,008 N

Table 3.8: TASOPT validation results with engine weight capped at
110% of the TASOPT value, expected to be similar at on design.

Flight Condition Predicted
TSFC [1/hr]

TASOPT
TSFC [1/hr]

Percent
Difference

Takeoff 0.4751 0.48434 -1.91

Top of Climb 0.7166 0.65290 9.76

On Design 0.6445 0.6404 0.69
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Table 3.9: The two operating points used when validating the presented
model against the GE90 like NPSS model.

Flight Condition Altitude [ft] Mach Number Thrust [lbf]

TOC 35,000 0.85 19,600

On-Design (cruise) 35,000 0.8 16,408.4

Table 3.10: Input values used for GE90 engine validation

Variable Value Variable Value

πfD 1.58 αmax 8.7877

πLPCD
1.26 fc 0.1444

πHPCD
20.033 ηfan 0.9153

ηb 0.997 ηLPC 0.9037

Gf 1 ηHPC 0.9247

f̄o 0.955 ηHPT 0.9121

ηLPT 0.9228 ηHP, ηLP 0.97

πtn 0.98 πb 0.94

πd 0.98 πfn 0.98

Wengine 77,399 N

3.3 NPSS GE90 Validation

The two operating points used for GE90 validation are given in Table 3.9. Again, TOC

conditions are similar to cruise conditions, so TSFC discrepancies should be small.

The SP model’s input values are given in Table 3.10 and results are presented in Table

3.11. TSFC errors are due to assumed gas properties and variations in component

maps. This validation case demonstrates that the presented model accurately scales

from a CFM56 up to a GE90.
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Table 3.11: NPSS GE90 validation results, expected to be similar at
both operating points.

Flight Condition Predicted TSFC
[1/hr]

NPSS TSFC [1/hr] Percent Difference

On Design 0.5328 0.5418 -1.66

TOC 0.5997 0.5876 2.59
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Chapter 4

Optimum-Aircraft Parametric

Studies

The engine model was integrated with a simplified commercial aircraft sizing model

and the combined models were solved to find the aircraft/engine combination that

burns the least amount of fuel. The model was solved with a variety of flight profiles

as well as a varying number of missions, mission ranges, and minimum climb rates.

Effects of these changes on engine sizing and parameter sensitivities are presented.

The commercial aircraft sizing model is intentionally simple, capturing only general

trends in aircraft sizing. A detailed description of the commercial sizing model is

available in Appendix C. For the purposes of this thesis, each mission was discretized

into four flight segments - two climb and two cruise. The objective is to minimize

total fuel burn. Table 4.1 lists the input values given to the aircraft model. The

same engine input values are used as during CFM56 validation (Table 3.3) with the

exception of max BPR which is increased to 5.6958, the maximum value from the

takeoff, climb, and cruise segments of a TASOPT 737-800 mission. The integrated

engine/commercial aircraft sizing model has 628 free variables and solves in 6.78

seconds (6 GP iterations).
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Table 4.1: Aircraft sizing and flight profile inputs.

Variable Value Unit

Neng 2 -

WSmax 6,664 N/m2

Npax 150 -

e 0.9 -

ARmax 10 -

4.1 Optimum-Aircraft Sensitivity to Specified Mis-

sion Range

To demonstrate that the combined model captures the proper trends, it was solved

for a variety of mission ranges. Each point on the following plots represents a unique

aircraft/engine combination. Total fuel burn increased with range, as shown by Figure

4-1.
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Figure 4-1: Total fuel burn versus mission range.

Figure 4-2 presents plots of max engine thrust, fan and core thrust, initial climb

and cruise TSFC, and engine weight versus mission range. All values remain roughly
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constant across mission range.
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(a) Max engine thrust, which occurs dur-
ing the initial climb segment, versus mission
range.
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(b) Fan and core thrust during the initial
climb segment versus mission range.
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(c) Initial climb and cruise TSFC versus mis-
sion range
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(d) Engine weight versus mission range.

Figure 4-2: Initial engine thrust, core and fan thrust, climb and cruise
TSFC, as well as engine weight for a variety of mission ranges.

4.2 Optimum-Aircraft Sensitivity to Specified Min-

imum Climb Rate

A minimum initial climb rate constraint was added to shift the nominal design point

towards climb. The minimum climb rate was for normal operating conditions (i.e.

both engines operating nominally). Increasing the minimum initial climb rate creates

a need for increased thrust at low altitude, similar to adding a minimum balanced
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field length requirement to an aircraft. The aircraft model was solved across a range

of minimum climb rates.

The initial thrust requirement on the engine was larger the higher the minimum

climb rate. This is presented in Figure 4-3. The minimum climb rate constraint does

not become active until the minimum climb rate exceeds 1,170 ft/min. The total

thrust, fan thrust, and core thrust (also plotted in Figure 4-3) all increase in a near

linear manner.
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(a) Total initial thrust
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(b) Initial fan and core thrust

Figure 4-3: Initial fan and core thrust versus minimum initial climb rate.

The engine model predicts engine weight will increase with minimum rate of climb,

as shown in Figure 4-4. This is the same as saying engine weight will increase with

thrust, which is expected.

As the engine is required to produce more thrust it gets physically larger. Figure

4-5 illustrates this with a plot of fan area versus minimum initial climb rate.

Figure 4-6 presents the initial climb and cruise TSFC versus the minimum initial

climb rate. For low minimum initial climb rates, the nominal design point remained

at cruise and the cruise TSFC was virtually unaffected by the higher climb rate.

However, as the climb rate continued to increase, the design point shifted toward

climb and cruise TSFC began to increase. Essentially, the high minimum climb rate

requirement is degrading cruise performance. A short balanced field length require-

ment would degrade the performance of a commercial aircraft in a similar way.
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Figure 4-4: Engine weight versus minimum initial climb rate.

4.3 Full Mission Versus Cruise Only Optimization

To illustrate how the removal of the on/off design point distinction allows this thesis’s

engine model to select the optimal engine, the climb portion of the flight was removed

and the optimal cruise engine was compared to the full mission optimal engine. The

aircraft in both missions had the same fuselage area, carried the same payload, and

had a cruise range of 2,000 nm. Results are presented in Table 4.2. The nominal

design point is shifted towards climb for the full mission engine, causing it to burn

3.37 percent more fuel during cruise than the cruise only engine. All component areas

are larger on the cruise only engine, which is (surprisingly) also 41 percent lighter.

When climb is not considered, the max thrust requirement and mass flow through

the engine are substantially smaller. Consequently, the mass flow dependent data fit

engine weight model (Section 2.5) predicts an unrealistically light engine.
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Figure 4-5: Fan inlet area (A2) versus minimum initial climb rate.

4.4 Multi-Mission Optimization

An extra layer of vectorization was added and the presented engine and simple aircraft

model was simultaneously optimized across four missions of ranges 500 nm, 1,000 nm,

1,500 nm, and 2,000 nm. Commercial aircraft are designed for high mission flexibility

which degrades overall fuel efficiency, motivating the use of multiple design reference

missions when optimizing an aircraft[26]. For simplicity, payload remained constant

for each mission. It is assumed the aircraft being optimized will fly 500 nm missions

Table 4.2: Differences in engine size when accounting for the full mission
profile and just cruise.

Variable Full Mission Value Cruise Only Value Percent Difference

A2 0.629 m2 0.767 m2 -21.88

A5 0.205 m2 0.232 m2 -13.12

A7 0.391 m2 0.472 m2 -20.65

Engine Weight 9,985.1 N 5,870.4 N 41.21

Initial Cruise TSFC 0.378 1/hr 0.381 1/hr -1.19
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Figure 4-6: Initial climb and cruise TSFC versus minimum initial climb
rate.

37.5 percent of the time, 1,000 nm mission 37.5 percent of the time, 1,500 nm missions

12.5 percent of the time, and 2,000 nm missions 12.5 percent of the time. Equation

4.1 is the weighted objective function for this problem.

objective =0.375Wfuel500nm + 0.375Wfuel1,000nm+ (4.1)

0.125Wfuel1,500nm + 0.125Wfuel2,000nm

Table 4.3 presents differences in the optimal engine size and fuel burn for the

two optimizations. As expected, the multi-mission optimized aircraft burns more fuel

during the 2,000 nm mission than the aircraft optimized for just the 2,000 nm flight.

The multi-mission optimization problem has 2,460 free variables and takes 28.3

seconds and six GP iterations to solve.
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Table 4.3: Differences in engine size for the presented multi-mission
optimization formulation and a single 2,000 nm range mission

optimization.

Variable Single Mission Value Multi-Mission Value Percent Difference

A2 0.629 m2 0.626 m2 0.47

A5 0.205 m2 0.214 m2 -3.97

A7 0.391 m2 0.403 m2 -3.17

Engine Weight 9,985.1 N N 10,178.0 N -1.93

2,000 nm Fuel Burn 47,870 N 48,076 N -0.43

4.5 Sensitivity Discussion

A strength of convex optimization is that, together with the optimum solution, it

provides sensitivities of this solution to all model parameter values. Sensitivities

are all local and computed about the optimal point. Equation 4.2[5] is the formula

for parameter sensitivities. If the sensitivity to a constant is 0.5 then decreasing

that constant by one percent will decrease the objective by approximately one half a

percent. If the sensitivity to a constant is -0.75, then a one percent increase in the

constant will decrease the objective by approximately three quarters of a percent.

Analyzing a model’s sensitivities can be useful in two ways. The first is to determine

which areas of a physical design should be improved. For example, if the sensitivity

to burner pressure drop is very large, it is advantageous to make the burner pressure

drop as small as possible. The second way sensitivities can be used is to guide model

development. If the sensitivity to a constant is low, it may not be worthwhile to

develop an intricate model for that constant. However, if the sensitivity is large, it is

important to ensure it is accurately modeled.

Parameter Sensitivity =
Fractional Objective-Function Change

Fractional Parameter Change
(4.2)

The integrated aircraft optimization problem was solved with a mission range of

2,000 nm. Table 4.4 presents a subset of engine sensitivities. The solution is most
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Table 4.4: Top engine design value sensitivities in the aircraft
optimization example for a single 2,000 nm mission.

Symbol Description Sensitivity

f̄o 1 Minus Percent Mass Flow Bled -2.50

ηHPshaft High Pressure Shaft Power Transmission Efficiency -1.50

πd Diffuser Pressure Ratio -1.40

ηb Combustor Efficiency -1.10

πfn Fan Duct Pressure Loss -1.00

ηLPshaft Low Pressure Shaft Power Transmission Efficiency -0.86

πb Burner Pressure Ratio -0.39

πfD On Design Fan Pressure Ratio 0.53

Table 4.5: Top aircraft design and mission parameter sensitivities in the
aircraft optimization example.

Variable Description Sensitivity

e Oswald Efficiency Factor -0.45

Wpax Passenger Weight 0.65

Rng Required Range 0.94

sensitive to core bleed flow, HP shaft power transmission efficiency, diffuser pressure

ratio, combustor efficiency, and the fan duct pressure loss. Increasing any of these

values will decrease fuel burn. There is a positive sensitivity to the fan design pressure

ratio. Decreasing the fan design pressure ratio will decrease fuel burn.

Table 4.5 presents sensitivities to some of the assumed constants in the aircraft

model. Trends are as expected. Increasing the Oswald efficiency factor decreases fuel

burn while decreasing passenger weight and mission range decreases fuel burn.

It is also interesting to analyze how sensitivities change as mission parameters

change. Figure 4-7 is a plot of the sensitivity to the fan design pressure ratio versus

minimum initial climb rate. Initially, it is quite beneficial to decrease the fan design
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pressure ratio, as indicated by the sensitivity of approximately 0.53. However, as

the minimum climb rate increases and the max thrust requirement on the engine

increases, it becomes less beneficial to decrease the fan design pressure ratio. This

is indicated by the decrease in sensitivity to approximately 0.1 for a minimum climb

rate of 3,500 ft/min.
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Figure 4-7: Sensitivity to fan design pressure ratio versus minimum
initial climb rate.
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Chapter 5

Conclusion

This thesis has presented a full 1D core+fan flowpath physics based, signomial pro-

gramming compatible, turbofan model that was successfully validated against TASOPT

and two NPSS models developed by Georgia Tech. The model is meant to be com-

bined with other aircraft subsystem models to perform full system optimization. Us-

ing GPKit’s performance modeling framework, the turbofan model was formulated

as a unified multi-point optimization problem with no on/off design point distinction

or order of operations. The model can be easily be integrated into a full aircraft

optimization model. This was demonstrated by integrating the turbofan model into

a simple commercial aircraft sizing model and performing a series of parametric stud-

ies, including a 2,460 variable multi-mission optimization problem that solves in 28

seconds.
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Appendix A

Diffuser, Fan, and Compressor

Model

Isentropic relations and a free stream Mach number, static pressure, and airspeed are

used to constrain inlet stagnation quantities. When the engine model is used as part

of a full aircraft optimization model, the ambient atmospheric properties and M0 are

linked to atmosphere and flight profile models. These values are set by the user if the

engine is run in isolation. Diffuser boundary layer growth is neglected and a specified

diffuser pressure ratio accounts for diffuser stagnation pressure drop. The constraints

governing this are presented below. Z0 replaces the non-GP compatible expression

1 + γ−1
2

(M0)2 in the stagnation relations.
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a0 =
√
γRT0

u0 = M0a0

Pt0 = P0Z0
3.5

Tt0 = T0Z0 (A.1)

ht0 = CpairTt0

Pt2 = πdPt0

Tt2 = Tt0

ht2 = ht0

State change across the fan, low pressure compressor (LPC), and high pressure

compressor (HPC) are computed using isentropic relations and user specified poly-

tropic efficiencies.

Pti+1
= πiPti

Tti+1
= Ttiπ

γi−1

ηiγi
i (A.2)

hti+1
= CpiTti
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Appendix B

Turbine Model

The low pressure turbine (LPT) must supply enough power to drive the fan and

LPC. The high pressure turbine (HPT) must supply enough power to drive the HPC.

This is ensured by enforcing the two shaft power balance constraints below, both of

which are signomial equalities. f̄o is equal to one minus the percent of mass flow

bled to provide pressurization and deice (1-ṁofftake/ṁcore). Shaft power offtakes for

customer power are smeared into the shaft power transmission efficiencies, ηHP/LP.

f̄oηHP(1 + ff)(ht4.1 − ht4.5) = (ht3 − ht2.5), (B.1)

f̄oηLP(1 + ff)(ht4.9 − ht4.5) = α+1(ht2.1 − ht2) + (ht1.8 − ht2.5), (B.2)

The isentropic relations and user specified component polytropic efficiencies de-

termine fluid states at stations 4.5 and 4.9.

Pti+1
= πiPti (B.3)

πi =

(
Tti+1

Tti

) ηiγi
γi−1

(B.4)

hti+1
= CpiTti (B.5)
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Appendix C

Flight Profile and Aircraft Sizing

Model

The aircraft sizing model and flight profile model sizes a commercial aircraft for

minimum fuel burn during a flight of user specified range. The model is discretized

into a user selected number of climb and cruise flight segments. Descent is neglected.

To avoid introducing a signomial, the downrange distance traveled during climb does

not contribute to total mission range.

Basic Aircraft Model Nomenclature

Afuse = projected fuselage area

Apax = required fuselage area per passenger

AR = wing aspect ratio

b = wing span

bmax = max allowed wing span

Cdfuse = fuselage drag coefficient

Cdw = wing drag coefficient

D = total aircraft drag

∆H = altitude change

K = induced drag correction factor
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Neng = aircraft’s number of engines

Npax = aircraft’s number of passengers

θ = climb angle

h = altitude

L = temperature lapse rate in the troposphere

Pexcess = excess power

Range = downrange distance covered

RC = rate of climb

S = wing planform area

t = flight segment duration

Vstall = aircraft stall speed

Wavg = average flight segment aircraft weight

Wend = aircraft flight segment end weight

Wfuel = flight segment fuel weight burned

Wfueltotal = total fuel weight

Wfuse = fuselage weight

Wpax = passenger weight

Wpayload = payload weight

WS = wing loading

WSmax = max allowed wing loading

Wstart = aircraft flight segment start weight

WTO = takeoff weight

Wwing = wing weight

zbre = Breguet parameter

(·)...i = flight segment i quantity
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C.1 Weight Breakdown

The payload is taken to be only passengers and their baggage. Per passenger total

weight (person + baggage) is assumed to be 210 pounds and the number of passengers,

Npax, is specified by the user. The empty fuselage and tail weight is approximated

as 75 percent of the payload weight. The 75 percent fraction is estimated from

TASOPT 737 output. Wing weight is computed using a simplified Raymer wing

weight equation normalized by TASOPT 737 wing weight, area, and aspect ratio

values[25] in Equation C.3. Total fuel burn is the sum of segment fuel burn.

Wpayload = WpaxNpax (C.1)

Wfuse = 0.75Wpayload (C.2)

(
S

124.58m2

)0.65(
AR

10.1

)0.5

=
Wwing

105384.1524N
(C.3)

Wfueli = NengTSFCitiFi (C.4)

Wfueltotal ≥
N∑
n=1

Wfueli (C.5)

The aircraft’s take off weight is the sum of all previously computed weights. Engine

weight, Weng, is set by the linked turbofan model. Neng is the user input number of

engines.

WTO ≥ Wfuse +Wpayload +Wfueltotal +NengWeng +Wwing (C.6)

Equations C.7 through C.9 set each flight segment’s start and end weight.

Wstarti = Wendi−1
(C.7)
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Wstart0 = WTO (C.8)

Wendi ≥ Wempty +Wpayload +NengWeng +Wwing (C.9)

In later constraints, Wavgi , the geometric mean of a segments start and end weight,

is used instead of either the segment start or end weight. This increases accuracy and

is more stable than using segment start or end weight.

Wavgi =
√
WstartiWendi (C.10)

C.2 Aircraft Sizing

To capture landing/takeoff constraints wing loading is constrained to be less than a

user specified max value. Aspect ratio, AR, is set by the wing span and wing area and

constrained to be less than a user input maximum value. There is no wing structural

model. Without the user input max value aspect ratio would grow unrealistically

large.

WSi
=

1
2
CLiSρi(Vi)

2

S
(C.11)

WSi
≤ WSmax (C.12)

AR =
b2

S
(C.13)

AR ≤ ARmax (C.14)

In order to capture trends in fuselage drag, the fuselage is approximated as a flat

plate. The plate’s area is a function of number of passengers; the area per passenger,
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Npax is estimated as 1m2/passenger. The estimate is based off the per passenger

projected fuselage areas of late model 737 and 777s.

Afuse = ApaxNpax (C.15)

The drag coefficient of a turbulent flat plate parallel to the free stream is 0.005.

Fuselage drag can then be approximated as Cdfuse = 1
2
ρV 2AfuseCdfuse where Cdfuse =

0.005.

C.3 General Aircraft Performance

A number of constraints apply to both the climb and cruise portions of the flight.

The speed of sound, velocity, and Mach number are computed for each flight segment.

Velocity is also constrained to be greater than a user input stall speed. Segment lift,

1
2
ρiCLi(Vi)

2, is equated to the segments average weight.

ai =
√
γRTi (C.16)

V ≥ Vstall (C.17)

Vi = aiMi (C.18)

Wavgi =
1

2
ρiCLi(Vi)

2 (C.19)

Drag is computed with Equation C.21. The parabolic drag model, with the in-

duced drag parameter K, is used to model induced drag. GPfit[18, 16] was used

to develop a GP compatible fit to Xfoil[9] drag data for an NC130 airfoil[10] at a

Reynolds number of 20 million. The fit is plotted in Figure C-1. Equation C.20,

which sets Cdw , was derived from the data fit.

69



Cdw ≥(1.025e10)CL
15.58M156.86 + (2.856e− 13)CL

1.28M6.25+ (C.20)

(2.091e− 14)CL
0.88M0.03 + (1.944e6)CL

5.65M146.52

Di ≥ (
1

2
ρi(Vi)

2)(Cdw +K(CL)2 + CDfuse
Afuse) (C.21)
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Figure C-1: Xfoil NC130 airfoil drag data (dots) and a posynomial
approximation of the data (solid line) for a Reynolds number of 20

million.

K = (πeAR)−1 (C.22)
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C.4 Climb

The climb rate is set with an excess power formulation[2] and constrained to be greater

than 500 ft/min. Equation C.26 uses a small angle approximation to set the climb

angle, θ.

Pexcess + ViDi ≤ ViNengFi (C.23)

RCi =
Pexcess

Wavgi

(C.24)

RCi ≥ 500 ft/min (C.25)

θiVi = RCi (C.26)

Altitude change during each climb segment is a function of climb rate and total

segment time. Equation C.28 uses a small angle approximation to compute the down-

range distance covered during a climb segment. This distance is not credited towards

the aircraft’s mission range.

∆Hi = tiRCi (C.27)

tiVi = Rangei (C.28)

During climb there is a downward pressure on each segment’s end altitude (climb-

ing extra burns more fuel). This allows each climb segments end altitude to be

computed with equation C.29.

hi ≥ hi−1 + ∆Hi (C.29)
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C.5 Cruise

During cruse, steady level flight conditions are assumed and segment duration is

constrained via equation C.31. This is the same equation as C.28, except it does not

use a small angle approximation.

Di = NengFi (C.30)

tiVi = Rangei (C.31)

The Breguet Range equation (Equation C.32) is used to model cruise fuel burn.

However, the natural logarithm in Equation C.32 is not GP compatible and must be

reformulated using the procedure outlined by Hoburg et al[15]. Equations C.33 and

C.34 constitute the reformulated Breguet range equation. Wi in equation C.32 has

been replaced with Wavgi to increase accuracy.

ln

(
Wstarti

Wendi

)
=

Di(TSFCiti)

W
(C.32)

zbre +
zbre

2

2
+
zbre

3

6
≤ Wfuel

Wend

(C.33)

zbre ≥
Di(TSFCi)

Wavgi

ti (C.34)

C.6 Atmosphere Model

Equation C.35, a signomial equality, is used to compute each flight segment’s temper-

ature (h is linked to segment end altitude). Atmospheric pressure is computed with

the hydrostatic equation and density is computed with the ideal gas law. Latm is the

standard temperature lapse rate (0.0065 K/m), R is the universal gas constant, M is

72



the gasses molar mass, TSL is sea-level temperature, and PSL is the sea level pressure.

TSL = T + Latmh (C.35)

(
P

PSL

)LR
g

=
T

TSL

(C.36)

ρ =
P

(R/M)T
(C.37)
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Appendix D

Signomial Equality Constraint

Intuition

Signomial Equality constraints are required when one variable in a signomial is being

pressured in multiple different directions or a posynomial inequality will not remain

tight. Consider the constraints used in a simple atmosphere model integrated into an

aircraft mission profile. L is the standard the temperature lapse rate of 0.0065 K/m

and TSL and PSL are the sea level temperature and pressure, respectively.

ρ =
P

RT
,

(
P

PSL

)LR
g

=
T

TSL

, TSL = T + Lh (D.1)

It is not clear apriori how to relax the posynomial equality TSL = T + Lh to an

inequality. During the climb phase of the flight, there will be an upwards pressure

on density (higher density allows a higher climb rate) creating a downwards pressure

on T . During the cruise portion of the flight, there will be a downward pressure on

density (lower density produces less drag on the aircraft) creating an upwards pressure

on T . Situations like this require signomial equality constraints.

Within the engine model, the variables α+1 and ff+1 are introduced to limit the

total number of signomial equalities in the model. Both must be defined via signomial

equalities. There is an upward pressure on α (engines with a larger by-pass ratio tend

to be more efficient) and α+1 due to Equation 2.57, so the GP compatible posynomial
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inequality α+1 ≥ α+ 1 would not remain tight. Similarly, an upward pressure on ff+1

can be generated within the nominal design point estimation constraints in Section

2.2 so the constraint ff+1 ≥ f + 1 would not remain tight.

α+1 = α + 1 (D.2)

ff+1 = ff + 1 (D.3)
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Appendix E

Engine Boundary Layer Ingestion

An engine boundary layer ingestion (BLI) model is required to model the D8. The

D8 engine configuration is illustrated in Figure E-1. BLI engines ingest air with lower

average velocity, and in turn lower stagnation pressure, than free stream air. The

following analysis assumes the engine will ingest half free stream and half boundary

layer air, in line with current BLI propuslor research[14].

Three constraints were modified to account for BLI. Equation A.1 was replaced

by Equation E.1 where inlet stagnation pressure is reduced by the factor fBLIP . Note

fBLIP represents the average drop in stagnation pressure across the entire inlet, i.e.,

if the boundary layer has on average 40 percent less stagnation pressure than fBLIP

would be set to 0.2.

Pt0 = fBLIPPatmZ0
3.5 (E.1)

Thrust is equal to the working fluid’s rate of momentum change. The factor

V1

Aircraft

Propulsor

Boundary Layer

Figure E-1: Cartoon illustrating boundary layer growth on a BLI
equipped aircraft similar to the D8.
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fBLIV was introduced to fan and core thrust constraints (Equations 2.53 and 2.54) to

account for the decrease in average free stream velocity. Again, fBLIV is the average

velocity drop across the entire fan.

F8/(αṁcore) + fBLIVu0 ≤ u8 (E.2)

F6/(f̄oṁcore) + fBLIVu0 ≤ u6 (E.3)

Determining fBLIP and fBLIV can be difficult. As of now, there are no GP or SP

compatible boundary layer models so either fBLIP or fBLIV must be estimated. One

method of estimation is to assume a boundary layer profile, such as Falkner-Skan.

This could apply to a flat plate (including a flat plate at an angle of attack)[11]. In

practice this has proven inaccurate, particularly for high speed boundary layers. If

an estimate for the boundary layer’s kinetic energy defect is available, it is possible to

estimate fBLIP via a mass weighted average of entropy as shown in TASOPT[10]. This

method is applicable to high speed boundary layers. Finally, it is possible to estimate

fBLIP from the experimental results presented by Hall et al.[8]. After estimating either

fBLIP or fBLIV , the other can be determined using Equation E.4.

fBLIP =
Patm + 0.5ρatm(fBLIVMa)2

Patm + 0.5ρatm(Ma)2
(E.4)

It is important to note fan distortion effects will decrease fan efficiency to approx-

imately 90%[3].
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